Skip to main content

On the Power of Parity Queries in Boolean Decision Trees

  • Conference paper
  • First Online:
Theory and Applications of Models of Computation (TAMC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9076))

  • 885 Accesses

Abstract

In an influential paper, Kushilevitz and Mansour (1993) introduced a natural extension of Boolean decision trees called parity decision tree (PDT) where one may query the sum modulo \(2,\) i.e., the parity, of an arbitrary subset of variables. Although originally introduced in the context of learning, parity decision trees have recently regained interest in the context of communication complexity (cf. Shi and Zhang 2010) and property testing (cf. Bhrushundi, Chakraborty, and Kulkarni 2013). In this paper, we investigate the power of parity queries. In particular, we show that the parity queries can be replaced by ordinary ones at the cost of the total influence aka average sensitivity per query. Our simulation is tight as demonstrated by the parity function.

At the heart of our result lies a qualitative extension of the result of O’Donnell, Saks, Schramme, and Servedio (2005) titled: Every decision tree has an influential variable. Recently Jain and Zhang (2011) obtained an alternate proof of the same. Our main contribution in this paper is a simple but surprising observation that the query elimination method of Jain and Zhang can indeed be adapted to eliminate, seemingly much more powerful, parity queries. Moreover, we extend our result to linear queries for Boolean valued functions over arbitrary finite fields.

Raghav Kulkarni—Research at the Centre for Quantum Technologies is funded by the Singapore Ministry of Education and the National Research Foundation.

Xiaoming Sun—Part of this work was done while the author was visiting the Centre for Quantum Techologies, National University of Singapore. He is supported in part by the National Natural Science Foundation of China Grant 61170062, 61222202, 61433014 and the China National Program for support of Top-notch Young Professionals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The \(O_\epsilon \) notation hides a multiplicative constant depending on \(\epsilon \) and the \(\tilde{O_\epsilon }\) notation hides a further poly-logarithmic multiplicative factor.

References

  1. Aaronson, S., Ambainis, A.: The need for structure in quantum speedups. In: ICS 2011, pp. 338–352 (2011)

    Google Scholar 

  2. Ada, A., Fawzi, O., Hatami, H.: Spectral norm of symmetric functions. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds.) APPROX 2012 and RANDOM 2012. LNCS, vol. 7408, pp. 338–349. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Babai, L., Banerjee, A., Kulkarni, R., Naik, V.: Evasiveness and the distribution of prime numbers. In: STACS 2010, pp. 71-82 (2010)

    Google Scholar 

  4. Bhrushundi, A., Chakraborty, S., Kulkarni, R.: Property testing bounds for linear and quadratic functions via parity decision trees. In: Hirsch, E.A., Kuznetsov, S.O., Pin, J.É., Vereshchagin, N.K. (eds.) CSR 2014. LNCS, vol. 8476, pp. 97–110. Springer, Heidelberg (2014). Electronic colloquium on Computational Complexity (ECCC)

    Chapter  Google Scholar 

  5. Benjamini, I., Kalai, G., Schramm, O.: Noise sensitivity of boolean functions and its application to percolation. Inst. Hautes Etudes Sci. Publ. Math. 90, 5–43 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ben- Or, M., Linial, N.: Collective coin flipping. In: Proceedings of the 26th FOCS, pp. 408–416 (1985)

    Google Scholar 

  7. Bollobas, B.: Combinatorics: Set Systems, Hypergraphs, Families Of Vectors And Combinatorial Probability. Cambridge University Press, New York (1986)

    MATH  Google Scholar 

  8. Buhrman, H., de Wolf, R.: Complexity measures and decision tree complexity: a survey. Theor. Comput. Sci. 288(1), 21–43 (2002)

    Article  MATH  Google Scholar 

  9. Efron, B., Stein, C.: The jackknife estimate of variance. Ann. Stat. 9, 586–596 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gopalan, P., O’Donnell, R., Servedio, R.A., Shpilka, A., Wimmer, K.: Testing fourier dimensionality and sparsity. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 500–512. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Hayes, T.P., Kutin, S., van Melkebeek, D.: The quantum black-box complexity of majority. algorithmica 34(4), 480–501 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hatami, P., Kulkarni, R., Pankratov, D.: Variations on the sensitivity conjecture. Theor. Comput. Grad. Surv. 2, 1–27 (2011)

    Article  Google Scholar 

  13. Jain, R., Zhang, S.: The influence lower bound via query elimination. Theor. Comput. 7(1), 147–153 (2011)

    Article  MathSciNet  Google Scholar 

  14. Kulkarni, R.: Evasiveness through a circuit lens. In: ITCS 2013 pp. 139–144 (2013)

    Google Scholar 

  15. Kulkarni, R.: Gems in decision tree complexity revisited. SIGACT News 44(3), 42–55 (2013)

    Article  MathSciNet  Google Scholar 

  16. Kahn, J., Kalai, G., Linial, N.: The influence of variables on boolean functions (extended abstract). In: FOCS 1988, pp. 68–80 (1988)

    Google Scholar 

  17. Kushilevitz, E., Mansour, Y.: Learning decision trees using the fourier spectrum. SIAM J. Comput. 22(6), 1331–1348 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kulkarni, R., Santha, M.: Query complexity of matroids. In: Spirakis, P.G., Serna, M. (eds.) CIAC 2013. LNCS, vol. 7878, pp. 300–311. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  19. Kahn, J., Saks, M.E., Sturtevant, D.: A topological approach to evasiveness. Combinatorica 4(4), 297–306 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lee, H.K.: Decision trees and influence: an inductive proof of the OSSS inequality. Theor. Comput. 6(1), 81–84 (2010)

    Article  Google Scholar 

  21. Linial, N., Mansour, Y., Nisan, N.: Constant depth circuits, fourier transform, and learnability. J. ACM 40(3), 607–620 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lovasz, L., Young, N. E.: Lecture Notes on Evasiveness of Graph Properties arXiv:cs/020503 (2002)

    Google Scholar 

  23. Montanaro, A., Osborne, T.: On the communication complexity of XOR functions. CoRR abs/0909.3392 (2009)

    Google Scholar 

  24. Mehlhorn, K., Schmidt, E.: Las Vegas is better than determinism in VLSI and distributed computing. In: Proceedings of the 14th STOC, pp. 330–337. ACM Press, New York (1982)

    Google Scholar 

  25. Nisan, N.: CREW PRAMs and decision trees. In: Proceedings of the 21st STOC, pp. 327–335. ACM Press, New York (1989)

    Google Scholar 

  26. Nisan, N., Szegedy, M.: On the degree of boolean functions as real polynomials. Comput. Complex. 4, 301–313 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  27. Nisan, N., Wigderson, A.: On rank vs. communication complexity. Combinatorica 15(4), 557–565 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  28. O’Donnell, R., Servedio, R.A.: Learning monotone decision trees in polynomial time. SIAM J. Comput. 37(3), 827–844 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. O’Donnell, R., Saks, M.E., Schramm, O., Servedio, R.A.: Every decision tree has an influential variable. In: FOCS, pp. 31-39 (2005)

    Google Scholar 

  30. Sherstov, A.A.: Making polynomials robust to noise. In: STOC 2012, pp. 747–758 (2012)

    Google Scholar 

  31. Shi, Y., Zhang, Z.: Communication Complexities of XOR functions CoRR abs/0808.1762 (2008)

    Google Scholar 

  32. Shpilka, A., Tal, A., Volk, B.L.: On the Structure of Boolean Functions with Small Spectral Norm: arXiv:1304.0371

  33. Saks, M.E., Wigderson, A.: Probabilistic boolean decision trees and the complexity of evaluating game trees. In: FOCS, pp. 29–38 (1986)

    Google Scholar 

  34. Zhang, Z., Shi, Y.: On the parity complexity measures of boolean functions. Theor. Comput. Sci. 411(26–28), 2612–2618 (2010)

    Article  MATH  Google Scholar 

  35. Talagrand, M.: On russo’s approximate 0-1 law. Ann. Probab. 22(3), 1576–1587 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  36. Tsang, H.Y., Wong, C.H., Xie, N., Zhang, S.: Fourier sparsity, spectral norm, and the Log-rank conjecture. CoRR abs/1304.1245 (2013) FOCS (2014)

    Google Scholar 

Download references

Acknowledgements

We thank Rahul Jain, Supartha Poddar, Miklos Santha, and Avishay Tal for several helpful discussions. We also thank Ben vee Volk for pointing out that the super-linear separation in [27] works for PDTs as well.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youming Qiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kulkarni, R., Qiao, Y., Sun, X. (2015). On the Power of Parity Queries in Boolean Decision Trees. In: Jain, R., Jain, S., Stephan, F. (eds) Theory and Applications of Models of Computation. TAMC 2015. Lecture Notes in Computer Science(), vol 9076. Springer, Cham. https://doi.org/10.1007/978-3-319-17142-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17142-5_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17141-8

  • Online ISBN: 978-3-319-17142-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics