Skip to main content

Hilbert’s Tenth Problem for Subrings of \({\mathbb {Q}}\) and Number Fields (Extended Abstract)

  • Conference paper
  • First Online:
Theory and Applications of Models of Computation (TAMC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9076))

Abstract

In 1900 David Hilbert presented a list of questions at an international meeting of Mathematicians in Paris.

A. Shlapentokh—The author has been partially supported by the NSF grant DMS-1161456.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cornelissen, G., Thanases, P., Zahidi, K., Zahidi, K.: Division-ample sets and diophantine problem for rings of integers. J. de Théorie des Nombres Bordeaux 17, 727–735 (2005)

    Article  MATH  Google Scholar 

  2. Cornelissen, G., Zahidi, K.: Topology of diophantine sets: remarks on Mazur’s conjectures. In: Denef, J., Lipshitz, L., Pheidas, T., Van Geel, J. (eds.) Hilbert’s Tenth Problem: Relations with Arithmetic and Algebraic Geometry. Contemporary Mathematics, pp. 253–260. American Mathematical Society, Rhods Island (2000)

    Chapter  Google Scholar 

  3. Davis, M.: Hilbert’s tenth problem is unsolvable. Am. Math. Monthly 80, 233–269 (1973)

    Article  MATH  Google Scholar 

  4. Davis, M., Matiyasevich, Y., Robinson, J.: Hilbert’s tenth problem. Diophantine equations: Positive aspects of a negative solution. In: Proceedings of Symposia in Pure Mathematics, vol. 28, pp. 323–378. American Mathematical Society (1976)

    Google Scholar 

  5. Denef, J.: Hilbert’s tenth problem for quadratic rings. Proc. Am. Math. Soc. 48, 214–220 (1975)

    MATH  MathSciNet  Google Scholar 

  6. Denef, J., Lipshitz, L.: Diophantine sets over some rings of algebraic integers. J. London Math. Soc. 18(2), 385–391 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  7. Eisenträger, K., Everest, G.: Descent on elliptic curves and Hilbert’s tenth problem. Proc. Am. Math. Soc. 137(6), 1951–1959 (2009)

    Article  MATH  Google Scholar 

  8. Eisenträger, K., Everest, G., Shlapentokh, A.: Hilbert’s tenth problem and Mazur’s conjectures in complementary subrings of number fields. Math. Res. Lett. 18(6), 1141–1162 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Eisenträger, K., Miller, R., Park, J., Shlapentokh, A.: Easy as \(\mathbb{Q}\). (work in progress)

    Google Scholar 

  10. Friedberg, R.M.: Two recursively enumerable sets of incomparable degrees of unsolvability. Proc. National Acad. Sci. USA 43, 236–238 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jochen K.: Defining \({\mathbb{Z}}\) in \({\mathbb{Q}}\) Annals of Mathematics to appear

    Google Scholar 

  12. Matiyasevich, Y.V.: Hilbert’s tenth problem. Foundations of Computing Series. MIT Press, Cambridge (1993). Translated from the 1993 Russian original by the author, With a foreword by Martin Davis

    Google Scholar 

  13. Mazur, B.: The topology of rational points. Exp. Math. 1(1), 35–45 (1992)

    MATH  MathSciNet  Google Scholar 

  14. Mazur, B.: Questions of decidability and undecidability in number theory. J. Symb.Logic 59(2), 353–371 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mazur, B.: Galois representations in arithmetic algebraic geometry. In: Scholl, A.J., Taylor, R.L. (eds.) Open problems regarding rational points on curves and varieties. Cambridge University Press, Cambridge (1998)

    Chapter  Google Scholar 

  16. Mazur, B., Rubin, K.: Ranks of twists of elliptic curves and Hilbert’s Tenth Problem. Inventiones Mathematicae 181, 541–575 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Muchnik, A.A.: On the separability of recursively enumerable sets. Doklady Akademii Nauk SSSR (N.S.), vol. 109,pp. 29–32 (1956)

    Google Scholar 

  18. Perlega, S.: Additional results to a theorem of Eisenträger and Everest. Archiv der Mathematik (Basel) 97(2), 141–149 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pheidas, T.: Hilbert’s tenth problem for a class of rings of algebraic integers. Proc. Am. Math. Soc. 104(2), 611–620 (1988)

    MATH  MathSciNet  Google Scholar 

  20. Bjorn, P.: Elliptic curves whose rank does not grow and Hilbert’s Tenth Problem over the rings of integers. Private Communication

    Google Scholar 

  21. Poonen, B.: Using elliptic curves of rank one towards the undecidability of Hilbert’s tenth problem over rings of algebraic integers. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 33–42. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  22. Poonen, B.: Hilbert’s tenth problem and Mazur’s conjecture for large subrings of \(\mathbb{Q}\). J Am. Math. Soc. 16(4), 981–990 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Poonen, B., Shlapentokh, A.: Diophantine definability of infinite discrete non-archimedean sets and diophantine models for large subrings of number fields. Journal für die Reine und Angewandte Mathematik 27–48, 2005 (2005)

    Google Scholar 

  24. Robinson, J.: Definability and decision problems in arithmetic. J. Symb. Logic 14, 98–114 (1949)

    Article  MATH  Google Scholar 

  25. Shlapentokh, A.: Extension of Hilbert’s tenth problem to some algebraic number fields. Commun. Pure Appl. Math. XLII, 939–962 (1989)

    Article  MathSciNet  Google Scholar 

  26. Shlapentokh, A.: Diophantine classes of holomorphy rings of global fields. J. Algebra 169(1), 139–175 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  27. Shlapentokh, A.: Diophantine equivalence andcountable rings. J. Symb. Logic 59, 1068–1095 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  28. Shlapentokh, A.: Elliptic curves retaining their rank in finite extensions and Hilbert’s tenth problem for rings of algebraic numbers. Trans. Am. Math. Soc. 360(7), 3541–3555 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  29. Shlapentokh, A.: Elliptic curve points and Diophantine models of \(\mathbb{Z}\) in large subrings of number fields. Int. J. Number Theor. 8(6), 1335–1365 (2012)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra Shlapentokh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Shlapentokh, A. (2015). Hilbert’s Tenth Problem for Subrings of \({\mathbb {Q}}\) and Number Fields (Extended Abstract). In: Jain, R., Jain, S., Stephan, F. (eds) Theory and Applications of Models of Computation. TAMC 2015. Lecture Notes in Computer Science(), vol 9076. Springer, Cham. https://doi.org/10.1007/978-3-319-17142-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17142-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17141-8

  • Online ISBN: 978-3-319-17142-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics