Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

Abstract

Smart grid (SG) is regarded as the next-generation intelligent power grid. Smart grid provides the necessary fundamentals for power control and management in microgrid, which is considered as an important emerging application in SG. This chapter presents an introduction to the important concepts and technologies in smart grid, from two main aspects: smart grid infrastructure and smart grid applications. The smart infrastructure includes smart power system, information technology, and communication system. And smart grid applications include fundamental applications, emerging applications, and derived applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wald ML (2013) The blackout that exposed the flaws in the frid. In: The New York Times. http://www.nytimes.com/2013/11/11/booming/the-blackout-that-exposed-the-flaws-in-the-grid.html?_r=0. Accessed March 2015

  2. Hurricane Sandy (2015). http://en.wikipedia.org/wiki/Hurricane_Sandy. Accessed March 2015

  3. National Institute of Standards and Technology (2010) NIST framework and roadmap for smart grid interoperability standards, release 1.0. http://www.nist.gov/public_affairs/releases/upload/smartgrid_interoperability_final.pdf. Accessed March 2015

  4. European Committee for Electrotechnical Standardization (CENELEC) (2009) Smart meters coordination group: report of the second meeting held on 2009–09-28 and approval of SM-CG work program for EC submission

    Google Scholar 

  5. Federation of German Industries (BDI e.V.) (2010) Internet of energy-ICT for energy markets of the future. http://www.bdi.eu/BDI_english/103.htm. Accessed March 2015

  6. State Grid Corporation of China (2010) SGCC framework and roadmap for strong and smart grid standards

    Google Scholar 

  7. Japan (2010) Japans roadmap to international standardization for smart grid and collaborations with other countries

    Google Scholar 

  8. Farhangi H (2010) The path of the smart grid. IEEE Power Energy Mag 8(1):18–28

    Article  MathSciNet  Google Scholar 

  9. The shift project data portal (2012) World electricity production from all energy sources in 2012 (TWh). http://www.tsp-data-portal.org/Breakdown-of-Electricity-Generation-by-Energy-Source#tspQvChart. Accessed March 2015

  10. Energy Information Administration (EIA) (2014) Monthly energy review. http://www.eia.gov/totalenergy/data/monthly/#electricity. Accessed March 2015

  11. Zareipour H, Bhattacharya H, Canizares C (2004) Distributed generation: current status and challenges. NAPS 04:1–8

    Google Scholar 

  12. Pepermans G, Driesen J, Haeseldonckx et al (2005) Distributed generation: definition, benefits and issues. Energy Policy 33:787–798

    Article  Google Scholar 

  13. Molderink A, Bakker V, Bosman M et al (2010) Management and control of domestic smart grid technology. IEEE Trans. Smart Grid 1(2):109–119

    Article  Google Scholar 

  14. Carrasco J, Franquelo L, Bialasiewicz J et al (2006) Power electronic systems for the grid integration of renewable energy sources: a survey. IEEE Trans Ind Elect 53(4):1002–1016

    Article  Google Scholar 

  15. Lopes J, Hatziargyriou N, Mutale J et al (2007) Integrating distributed generation into electric power systems: a review of drivers, challenges and opportunities. Electr Power Syst Res 77(9):1189–1203

    Article  Google Scholar 

  16. International Energy Agency (2002) Distributed generation in liberalised electricity markets. http://gasunie.eldoc.ub.rug.nl/FILES/root/2002/3125958/3125958.pdf. Accessed March 2015

  17. Coster EJ, Myrzik M, Kruimer B et al (2011) Integration issues of distributed generation in distribution grids. Proc IEEE 99(1):28–39

    Article  Google Scholar 

  18. Pudjianto D, Ramsay C, Strbac G (2007) Virtual power plant and system integration of distributed energy resources. IET Renew Power Gener 1(1):10–16

    Article  Google Scholar 

  19. Ruiz N, Cobelo I, Oyarzabal J (2009) A Direct load control model for virtual power plant management. IEEE Trans Power Syst 24(2):959–966

    Article  Google Scholar 

  20. Lombardi P, Powalko M, Rudion K (2009) Optimal operation of a virtual power plant. Proceedings of the power and energy society general meeting. IEEE, New York, pp 1–6

    Google Scholar 

  21. Jansen B, Binding C, Sundstrom O, Gantenbein D (2010) Architecture and communication of an electric vehicle virtual power plant. In: Proceedings of the smart grid comm’10. IEEE, New York, pp 149–154

    Google Scholar 

  22. Raab A, Ferdowsi M, Karfopoulos E et al (2011) Virtual power plant control concepts with electric vehicles. In: Proceedings of 16th international conference on intelligent system applications to power systems. IEEE, New York, pp 1–6

    Google Scholar 

  23. Xiangjiaba-Shanghai HVDC system. http://en.wikipedia.org/wiki/Xiangjiaba%E2%80%93Shanghai_HVDC_system. Accessed March 2015

  24. Gemmell B, Dorn J, Retzmann D et al (2008) Prospects of multilevel VSC technologies for power transmission. In: Proceedings of transmission and distribution conference and exposition’08. IEEE/PES, USA, pp 1–16

    Google Scholar 

  25. Li F, Qiao W, Sun H et al (2010) Smart transmission grid: vision and framework. IEEE Trans Smart Grid 1(2):168–177

    Article  Google Scholar 

  26. Takuno T, Koyama M, Hikihara T (2010) In-home power distribution systems by circuit switching and power packet dispatching. In: Proceedings of the SmartGridComm10. IEEE, New York, pp 427–430

    Google Scholar 

  27. Tashiro K, Takahashi R, Hikihara T (2012) Feasibility of power packet dispatching at in-home DC distribution network. In: Proceedings of the SmartGridComm’12. IEEE, New York, pp 401–405

    Google Scholar 

  28. Gellings CW (2009) The smart grid: enabling energy efficiency and demand response. The Fairmont Press, USA

    Google Scholar 

  29. Denholm P, Mehos M (2011) Enabling greater penetration of solar power via the use of CSP with thermal energy storage. NREL Report No. TP-6A20-52978. Golden, CO: NREL

    Google Scholar 

  30. Register C (2015) The battery revolution: a technology disruption, economics and grid level application discussion with eos energy storage. http://www.forbes.com/sites/chipregister1/2015/01/13/the-battery-revolution-a-technology-disruption-economics-and-grid-level-application-discussion-with-eos-energy-storage/. Accessed March 2015

  31. U.S. Department of Energy (2013) Grid energy storage. http://energy.gov/sites/prod/files/2013/12/f5/Grid%20Energy%20Storage%20December%202013.pdf. Accessed March 2015

  32. He Y, Venkatesh B, Guan L (2012) Optimal scheduling for charging and discharging of electric vehicles. IEEE Trans Smart Grid 3(3):1095–1105

    Article  Google Scholar 

  33. Su W, Eichi H, Zeng W et al (2012) A survey on the electrification of transportation in a smart grid environment. IEEE Trans Ind Inf 8(1):1–10

    Article  Google Scholar 

  34. Conway E (2003) World’s biggest battery switched on in Alaska. http://www.telegraph.co.uk/technology/3312118/Worlds-biggest-battery-switched-on-in-Alaska.html. Accessed 2015

  35. Hill C, Such M, Chen D et al (2012) Battery energy storage for enabling integration of distributed solar power generation. IEEE Trans Smart Grid 3(2):850–857

    Article  Google Scholar 

  36. Hart DG (2008) Using AMI to realize the smart grid. In: Proceedings of the power and energy society general meeting (2008) Conversion and delivery of electrical energy in the 21st century. IEEE, New York, 1–2 pp

    Google Scholar 

  37. Gungor V, Lu B, Hancke G (2010) Opportunities and challenges of wireless sensor networks in smart srid. IEEE Trans Ind Electron 57(10):3557–3564

    Article  Google Scholar 

  38. Armenia A, Chow J (2010) A flexible phasor data concentrator design leveraging existing software technologies. IEEE Trans Smart Grid 1(1):73–81

    Article  Google Scholar 

  39. IEEE (2011) P2030/D7.0 draft guide for Smart Grid interoperability of energy technology and information technology operation with the electric power system (EPS), and end-use applications and loads

    Google Scholar 

  40. Chen M, Mao S, Zhang Y et al (2014) Big data: related technologies, challenges and future prospects. Springer, New York

    Book  Google Scholar 

  41. Fang X, Misra S, Xue G et al (2012) Smart grid—the new and improved power grid: a survey. IEEE Commun Surv Tutorials 14(99):944–980

    Article  Google Scholar 

  42. Gungor V, Lambert F (2006) A survey on communication networks for electric system automation. Comput Netw 50(7):877–897

    Article  Google Scholar 

  43. Akyildiz I, Wang X (2005) A survey on wireless mesh networks. IEEE Commun Mag 43(9):23–30

    Article  Google Scholar 

  44. Akyol B, Kirkham H, Clements S et al (2010) A survey of wireless communications for the electric power system. https://www.pnnl.gov/nationalsecurity/technical/secure_cyber_systems/pdf/power_grid_wireless.pdf. Accessed March 2015

  45. Erol-Kantarci M, Mouftah H (2011) Wireless sensor networks for cost-efficient residential energy management in the smart grid. IEEE Trans Smart Grid 2(2):314–325

    Article  Google Scholar 

  46. Lu B, Habetler T, Harley R et al (2007) Energy evaluation goes wireless. IEEE Ind Appl Mag 13(2):17–23

    Article  Google Scholar 

  47. Ferreira H, Lampe L, Newbury J et al (2010) Power line communications: theory and applications for narrowband and broadband communications over power lines. Wiley, New York

    Book  Google Scholar 

  48. Galli S, Scaglione A, Wang Z (2010) Power line communications and the smart grid. In: Proceedings of 2010 first IEEE international conference on smart grid communications. IEEE, New York, pp 303–308

    Google Scholar 

  49. Vardakas J, Zorba N, Verikoukis C (2015) A survey on demand response programs in smart grids: pricing methods and optimization algorithms. IEEE Commun Surv Tutorials 17(1):152–178

    Article  Google Scholar 

  50. Dept US,Energy,(2006) Benefits of demand response in electricity markets and recommendations for achieving them. Report to the United States Congress, Washington, USA

    Google Scholar 

  51. Atwa Y, El-Saadany E, Salama M et al (2010) Optimal renewable resources mix for distribution system energy loss minimization. IEEE Trans Power Syst 25(1):360–370

    Article  Google Scholar 

  52. Bakker V, Bosman M, Molderink A et al (2010) Demand side load management using a three step optimization methodology. In: Proceedings of the SmartGridComm’10. IEEE, New York, pp 431–436

    Google Scholar 

  53. Gormus S, Kulkarni P, Fan Z (2010) The power of networking: how networking can help power management. In Proceedings of SmartGridComm’10. IEEE, New York, pp 561–565

    Google Scholar 

  54. Brown R (2002) Electric power distribution reliability. Marcel Dekker, New York

    Book  Google Scholar 

  55. Moslehi K, Kumar R (2010) A reliability perspective of the smart grid. IEEE Trans Smart Grid 1(1):57–64

    Article  Google Scholar 

  56. Metke A, Ekl R (2010) Security technology for smart grid networks. IEEE Trans Smart Grid 1(1):99–107

    Article  Google Scholar 

  57. McDaniel P, McLaughlin S (2009) Security and privacy challenges in the smart grid. IEEE Secur Priv 7(3):75–77

    Article  Google Scholar 

  58. Cho H, Yamazaki T, Hahn M (2010) Aero: Extraction of users activities from electric power consumption data. IEEE Trans Consum Electron 56(3):2011–2018

    Article  Google Scholar 

  59. Li H, Mao R, Lai L et al (2010) Compressed meter reading for delay-sensitive and secure load report in smart grid. In: Proceedings of SmartGridComm’10. IEEE, New York, pp 114–119

    Google Scholar 

  60. Efthymiou C, Kalogridis G (2010) Smart grid privacy via anonymization of smart metering data. In: Proceedings of smartGridComm10. IEEE, New York, pp 238–243

    Google Scholar 

  61. Liu Y, Ning P, Reiter M (2009) False data injection attacks against state estimation in electric power grids. ACM CCS:21–32

    Google Scholar 

  62. Dan G, Sandberg H (2010) Stealth attacks and protection schemes for state estimators in power systems. In: Proceedings of the SmartGridComm10. IEEE, New York, pp 214–219

    Google Scholar 

  63. Xie L, Mo Y, Sinopoli B (2010) False data injection attacks in electricity markets. In: Proceedings of the SmartGridComm’10. IEEE, New York, pp 226–231

    Google Scholar 

  64. Clement-Nyns K, Haesen E, Driesen J (2010) The impact of charging plug-in hybrid electric vehicles on a residential distribution grid. IEEE Trans Power Syst 25(1):371–380

    Article  Google Scholar 

  65. Clement K, Haesen E, Driesen J (2009) Coordinated charging of multiple plug-in hybrid electric vehicles in residential distribution grids. In: Proceedings of the PSCE’09. IEEE/PES, New York, pp 1–7

    Google Scholar 

  66. Papadopoulos P, Jenkins N, Cipcigan L et al (2013) Coordination of the charging of electric vehicles using a multi-agent system. IEEE Trans Smart Grid 4(4):1802–1809

    Article  Google Scholar 

  67. Wang M, Liang H, Zhang R et al (2014) Mobility-aware coordinated charging for electric vehicles in VANET-enhanced smart grid. IEEE J Sel Areas Commun 32(7):1344–1360

    Article  MathSciNet  Google Scholar 

  68. Lund H, Kempton W (2008) Integration of renewable energy into the transport and electricity sectors through V2G. Energy Policy 36(9):3578–3587

    Article  Google Scholar 

  69. Lasseter RH (2002) MicroGrids. In: Proceedings of 2002 power engineering society winter meeting. IEEE, vol 1, pp 305–308. New York

    Google Scholar 

  70. Hatziargyriou N, Asano H, Iravani R (2007) Microgrids. IEEE Power Energy Mag 5(4):78–94

    Article  Google Scholar 

  71. Katiraei F, Iravani R, Hatziargyriou N et al (2008) Microgrids management. IEEE Power Energy Mag 6(3):54–65

    Article  Google Scholar 

  72. Tsikalakis A, Hatziargyriou N (2008) Centralized control for optimizing microgrids operation. IEEE Trans Energy Convers 23(1):241–248

    Article  Google Scholar 

  73. Ahn S, Nam S, Choi J et al (2013) Power scheduling of distributed generators for economic and stable operation of a microgrid. IEEE Trans Smart Grid 4(1):398–405

    Article  Google Scholar 

  74. Wang Y, Mao S, Nelms RM (2013) Online algorithm for optimal realtime energy distribution in the smart grid. IEEE Trans Emerg Top Comput 1(1):10–21

    Article  Google Scholar 

  75. Wang Y, Mao S, Nelms RM (2014) Asymptotic optimal online energy distribution in the smart grid. E-Letter IEEE Commun Soc Multimedia Commun Tech Committee (MMTC) 9(4):33–36

    Google Scholar 

  76. Wang Y, Mao S, Nelms RM (2014) Distributed online algorithm for optimal real-time energy distribution in the smart grid. IEEE Int Things J 1(1):70–80

    Article  Google Scholar 

  77. Wang Y, Mao S, Nelms RM (2015) On hierarchical power scheduling for the macrogrid and cooperative microgrids. IEEE Trans Ind Inf Appear. doi:10.1109/TII.2015.2417496

  78. Wang Y, Mao S, Nelms RM (2013) A distributed online algorithm for optimal real-time energy distribution in smart grid. In: Proceedings of the IEEE GLOBECOM 2013. Atlanta, GA, pp 1644–1649

    Google Scholar 

  79. Wang Y, Mao S, Nelms RM (2014) Optimal hierarchical power scheduling for cooperative microgrids. In: Proceedings of IEEE MASS 2014, Philadelphia, PA, pp 497–498

    Google Scholar 

  80. Huang Y, Mao S, Nelms RM (2015) Smooth scheduling for electricity distribution in the smart grid. IEEE Syst J Appear. doi:10.1109/JSYST.2014.2340231

  81. Huang Y, Mao S, Nelms RM (2014) Adaptive electricity scheduling in microgrids. IEEE Trans Smart Grid 5(1):270–281

    Article  Google Scholar 

  82. Huang Y, Mao S (2014) On quality of usage provisioning for electricity scheduling in microgrids. IEEE Syst J 8(2):619–628

    Article  Google Scholar 

  83. Huang Y, Mao S, Nelms RM (2013) Adaptive electricity scheduling in microgrids. In: Proceedings of the IEEE INFOCOM 2013, Turin, Italy, pp 1142–1150

    Google Scholar 

  84. Huang Y, Mao S, Nelms RM,(2012) Smooth electric power scheduling in power distribution networks. In: Proceedings of the IEEE GLOBECOM 2012—Workshop on smart grid communications: design for performance. Anaheim, CA, 1469–1473 pp

    Google Scholar 

  85. Huang Y, Mao S (2012) Adaptive electricity scheduling with quality of usage guarantees in microgrids. In: Proceedings of the IEEE GLOBECOM 2012, Anaheim, CA, pp 5160–5165

    Google Scholar 

  86. Pecas Lopes J, Moreira C, Madureira A (2006) Defining control strategies for microgrids islanded operation. IEEE Trans Power Syst 21(2):916–924

    Article  Google Scholar 

  87. ZTE (2015) http://enterprise.zte.com.cn/us/. Accessed March 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Wang, Y., Mao, S., Nelms, R.M. (2015). Introduction. In: Online Algorithms for Optimal Energy Distribution in Microgrids. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-17133-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17133-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17132-6

  • Online ISBN: 978-3-319-17133-3

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics