Skip to main content

Gene Structure of the 10q26 Locus: A Clue to Cracking the ARMS2/HTRA1 Riddle?

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 854))

Abstract

Age-related macular degeneration (AMD) is a sight-threatening disorder of the central retina. Being the leading cause of visual impairment in senior citizens, it represents a major public health issue in developed countries. Genetic studies of AMD identified two major susceptibility loci on chromosomes 1 and 10. The high-risk allele of the 10q26 locus encompasses three genes, PLEKHA1, ARMS2, and HTRA1 with high linkage disequilibrium and the individual contribution of the encoded proteins to disease etiology remains controversial. While PLEKHA1 and HTRA1 are highly conserved proteins, ARMS2 is only present in primates and can be detected by using RT-PCR. On the other hand, there is no unequivocal evidence for the existence of the encoded protein. However, it has been reported that risk haplotypes only affect the expression of ARMS2 (but not of HTRA1), making ARMS2 the best candidate for being the genuine AMD gene within this locus. Yet, homozygous carriers of a common haplotype carry a premature stop codon in the ARMS2 gene (R38X) and therefore lack ARMS2, but this variant is not associated with AMD. In this work we aimed at characterizing the diversity of transcripts originating from this locus, in order to find new hints on how to resolve this perplexing paradox. We found chimeric transcripts originating from the PLEKHA1 gene but ending in ARMS2. This finding may give a new explanation as to how variants in this locus contribute to AMD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akiva P, Toporik A, Edelheit S et al (2006) Transcription-mediated gene fusion in the human genome. Genome Res 16:30–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Allikmets R, Dean M (2008) Bringing age-related macular degeneration into focus. Nat Genet 40:820–821

    Article  CAS  PubMed  Google Scholar 

  • Brunner HG, van Driel MA (2004) From syndrome families to functional genomics. Nat Rev Genet 5:545–551

    Article  CAS  PubMed  Google Scholar 

  • Carvunis AR, Rolland T, Wapinski I et al (2012) Proto-genes and de novo gene birth. Nature 487:370–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clausen T, Kaiser M, Huber R et al (2011) HTRA proteases: regulated proteolysis in protein quality control. Nat Rev Mol Cell Biol 12:152–162

    Article  CAS  PubMed  Google Scholar 

  • Dewan A, Liu M, Hartman S et al (2006) HTRA1 promoter polymorphism in wet age-related macular degeneration. Science 314:989–992

    Article  CAS  PubMed  Google Scholar 

  • Edwards AO, Ritter R, 3rd, Abel KJ et al (2005) Complement factor H polymorphism and age-related macular degeneration. Science 308:421–424

    Article  CAS  PubMed  Google Scholar 

  • Francis PJ, Appukuttan B, Simmons E et al (2008) Rhesus monkeys and humans share common susceptibility genes for age-related macular disease. Hum Mol Genet 17:2673–2680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franke L, van Bakel H, Fokkens L et al (2006) Reconstruction of a functional human gene network, with an application for prioritizing positional candidate genes. Am J Hum Genet 78:1011–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frenkel-Morgenstern M, Lacroix V, Ezkurdia I et al (2012) Chimeras taking shape: potential functions of proteins encoded by chimeric RNA transcripts. Genome Res 22:1231–1242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedrich U, Myers CA, Fritsche LG et al (2011) Risk- and non-risk-associated variants at the 10q26 AMD locus influence ARMS2 mRNA expression but exclude pathogenic effects due to protein deficiency. Hum Mol Genet 20:1387–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fritsche LG, Loenhardt T, Janssen A et al (2008) Age-related macular degeneration is associated with an unstable ARMS2 (LOC387715) mRNA. Nat Genet 40:892–896

    Article  CAS  PubMed  Google Scholar 

  • Gingeras TR (2009) Implications of chimaeric non-co-linear transcripts. Nature 461:206–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hageman GS, Luthert PJ, Victor Chong NH et al (2001) An integrated hypothesis that considers drusen as biomarkers of immune-mediated processes at the RPE-Bruch’s membrane interface in aging and age-related macular degeneration. Prog Retin Eye Res 20:705–732

    Google Scholar 

  • Haines JL, Hauser MA, Schmidt S et al (2005) Complement factor H variant increases the risk of age-related macular degeneration. Science 308:419–421

    Article  CAS  PubMed  Google Scholar 

  • Jakobsdottir J, Conley YP, Weeks DE et al (2005) Susceptibility genes for age-related maculopathy on chromosome 10q26. Am J Hum Genet 77:389–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanda A, Chen W, Othman M et al (2007) A variant of mitochondrial protein LOC387715/ARMS2, not HTRA1, is strongly associated with age-related macular degeneration. Proc Natl Acad Sci USA 104:16227–16232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein RJ, Zeiss C, Chew EY et al (2005) Complement factor H polymorphism in age-related macular degeneration. Science 308:385–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kortvely E, Ueffing M (2012) Common mechanisms for separate maculopathies? Adv Exp Med Biol 723:61–66

    Article  CAS  PubMed  Google Scholar 

  • Kortvely E, Hauck SM, Duetsch G et al (2010) ARMS2 is a constituent of the extracellular matrix providing a link between familial and sporadic age-related macular degenerations. Invest Ophthalmol Vis Sci 51:79–88

    Article  PubMed  Google Scholar 

  • Parra G, Reymond A, Dabbouseh N et al (2006) Tandem chimerism as a means to increase protein complexity in the human genome. Genome Res 16:37–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Provis JM, Penfold PL, Cornish EE et al (2005) Anatomy and development of the macula: specialisation and the vulnerability to macular degeneration. Clin Exp Optom 88:269–281

    Article  PubMed  Google Scholar 

  • Rivera A, Fisher SA, Fritsche LG et al (2005) Hypothetical LOC387715 is a second major susceptibility gene for age-related macular degeneration, contributing independently of complement factor H to disease risk. Hum Mol Genet 14:3227–3236

    Article  CAS  PubMed  Google Scholar 

  • Seddon JM, Chen CA (2004) The epidemiology of age-related macular degeneration. Int Ophthalmol Clin 44:17–39

    Article  PubMed  Google Scholar 

  • Tay SK, Blythe J, Lipovich L (2009) Global discovery of primate-specific genes in the human genome. Proc Natl Acad Sci U S A 106:12019–12024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang G, Scott WK, Whitehead P et al (2012) A novel ARMS2 splice variant is identified in human retina. Exp Eye Res 94:187–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Z, Camp NJ, Sun H et al (2006) A variant of the HTRA1 gene increases susceptibility to age-related macular degeneration. Science 314:992–993

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Tong Z, Chen Y et al (2010) Genetic and functional dissection of HTRA1 and LOC387715 in age-related macular degeneration. PLoS Genet 6:e1000836

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu PK, Balaratnasingam C, Cringle SJ et al (2010) Microstructure and network organization of the microvasculature in the human macula. Invest Ophthalmol Vis Sci 51:6735–6743

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elod Kortvely .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Kortvely, E., Ueffing, M. (2016). Gene Structure of the 10q26 Locus: A Clue to Cracking the ARMS2/HTRA1 Riddle?. In: Bowes Rickman, C., LaVail, M., Anderson, R., Grimm, C., Hollyfield, J., Ash, J. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 854. Springer, Cham. https://doi.org/10.1007/978-3-319-17121-0_4

Download citation

Publish with us

Policies and ethics