Skip to main content

RDS Functional Domains and Dysfunction in Disease

  • Conference paper
  • First Online:
Book cover Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 854))

Abstract

The photoreceptor specific tetraspanin protein retina degeneration slow (RDS) is a critical component of the machinery necessary for the formation of rod and cone outer segments. Over 80 individual pathogenic mutations in RDS have been identified in human patients that lead to a wide variety of retinal degenerative diseases including retinitis pigmentosa, cone-rod dystrophy, and various forms of macular dystrophy. RDS-associated disease is characterized by a high degree of variability in phenotype and penetrance, making analysis of the underlying molecular mechanisms of interest difficult. Here we summarize our modern understanding of RDS functional domains and oligomerization and how disruption of these domains and complexes could contribute to the variety of disease pathologies seen in human patients with RDS mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Boesze-Battaglia K, Lamba OP, Napoli AA Jr et al (1998) Fusion between retinal rod outer segment membranes and model membranes: a role for photoreceptor peripherin/rds. Biochemistry (Mosc) 37:9477–9487

    Article  CAS  Google Scholar 

  • Boesze-Battaglia K, Stefano FP, Fitzgerald C et al (2007a) ROM-1 potentiates photoreceptor specific membrane fusion processes. Exp Eye Res 84:22–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boesze-Battaglia K, Song H, Sokolov M et al (2007b) The tetraspanin protein peripherin-2 forms a complex with melanoregulin, a putative membrane fusion regulator. Biochemistry (Mosc) 46:1256–1272

    Article  CAS  Google Scholar 

  • Boon CJ, den Hollander AI, Hoyng CB et al (2008) The spectrum of retinal dystrophies caused by mutations in the peripherin/RDS gene. Prog Retin Eye Res 27:213–235

    Article  CAS  PubMed  Google Scholar 

  • Cai X, Nash Z, Conley SM et al (2009) A partial structural and functional rescue of a retinitis pigmentosa model with compacted DNA nanoparticles. PLoS ONE 4:e5290

    Article  PubMed  PubMed Central  Google Scholar 

  • Chakraborty D, Ding XQ, Conley SM et al (2009) Differential requirements for retinal degeneration slow intermolecular disulfide-linked oligomerization in rods versus cones. Hum Mol Genet 18:797–808

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng T, Peachey NS, Li S et al (1997) The effect of peripherin/rds haploinsufficiency on rod and cone photoreceptors. J Neurosci 17:8118–8128

    CAS  PubMed  Google Scholar 

  • Clarke G, Goldberg AF, Vidgen D et al (2000) Rom-1 is required for rod photoreceptor viability and the regulation of disk morphogenesis. Nat Genet 25:67–73

    Article  CAS  PubMed  Google Scholar 

  • Conley SM, Stuck MW, Burnett JL et al (2014) Insights into the mechanisms of macular degeneration associated with the R172W mutation in RDS. Hum Mol Genet 23:3102–3114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding XQ, Nour M, Ritter LM et al (2004) The R172W mutation in peripherin/rds causes a cone-rod dystrophy in transgenic mice. Hum Mol Genet 13:2075–2087

    Article  CAS  PubMed  Google Scholar 

  • Ding XQ, Stricker HM, Naash MI (2005) Role of the second intradiscal loop of peripherin/rds in homo and hetero associations. Biochemistry (Mosc) 44:4897–4904

    Article  CAS  Google Scholar 

  • Edrington TCt, Yeagle PL, Gretzula CL et al (2007) Calcium-dependent association of calmodulin with the C-terminal domain of the tetraspanin protein peripherin/rds. Biochemistry (Mosc) 46:3862–3871

    Article  CAS  Google Scholar 

  • Farjo R, Skaggs JS, Nagel BA et al (2006) Retention of function without normal disc morphogenesis occurs in cone but not rod photoreceptors. J Cell Biol 173:59–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldberg AF (2006) Role of peripherin/rds in vertebrate photoreceptor architecture and inherited retinal degenerations. Int Rev Cytol 253:131–175

    Article  CAS  PubMed  Google Scholar 

  • Goldberg AF, Molday RS (1996) Subunit composition of the peripherin/rds-rom-1 disk rim complex from rod photoreceptors: hydrodynamic evidence for a tetrameric quaternary structure. Biochemistry (Mosc) 35:6144–6149

    Article  CAS  Google Scholar 

  • Goldberg AF, Moritz OL, Molday RS (1995) Heterologous expression of photoreceptor peripherin/rds and Rom-1 in COS-1 cells: assembly, interactions, and localization of multisubunit complexes. Biochemistry (Mosc) 34:14213–14219

    Article  CAS  Google Scholar 

  • Goldberg AF, Loewen CJ, Molday RS (1998) Cysteine residues of photoreceptor peripherin/rds: role in subunit assembly and autosomal dominant retinitis pigmentosa. Biochemistry (Mosc) 37:680–685

    Article  CAS  Google Scholar 

  • Hawkins RK, Jansen HG, Sanyal S (1985) Development and degeneration of retina in rds mutant mice: photoreceptor abnormalities in the heterozygotes. Exp Eye Res 41:701–720

    Article  CAS  PubMed  Google Scholar 

  • Khani SC, Karoukis AJ, Young JE et al (2003) Late-onset autosomal dominant macular dystrophy with choroidal neovascularization and nonexudative maculopathy associated with mutation in the RDS gene. Invest Ophthalmol Vis Sci 44:3570–3577

    Article  PubMed  PubMed Central  Google Scholar 

  • Khattree N, Ritter LM, Goldberg AF (2013) Membrane curvature generation by a C-terminal amphipathic helix in peripherin-2/rds, a tetraspanin required for photoreceptor sensory cilium morphogenesis. J Cell Sci 126(Pt 20):4659–4670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loewen CJ, Molday RS (2000) Disulfide-mediated oligomerization of Peripherin/Rds and Rom-1 in photoreceptor disk membranes. Implications for photoreceptor outer segment morphogenesis and degeneration. J Biol Chem 275:5370–5378

    Article  CAS  PubMed  Google Scholar 

  • Poetsch A, Molday LL, Molday RS (2001) The cGMP-gated channel and related glutamic acid-rich proteins interact with peripherin-2 at the rim region of rod photoreceptor disc membranes. J Biol Chem 276:48009–48016

    CAS  PubMed  Google Scholar 

  • Saga M, Mashima Y, Akeo K et al (1993) A novel Cys-214-Ser mutation in the peripherin/RDS gene in a Japanese family with autosomal dominant retinitis pigmentosa. Hum Genet 92:519–521

    Article  CAS  PubMed  Google Scholar 

  • Salinas RY, Baker SA, Gospe SM 3rd et al (2013) A single valine residue plays an essential role in peripherin/rds targeting to photoreceptor outer segments. PLoS ONE 8:e54292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stricker HM, Ding XQ, Quiambao A et al (2005) The Cys214– > Ser mutation in peripherin/rds causes a loss-of-function phenotype in transgenic mice. Biochem J 388:605–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stuck MW, Conley SM, Naash MI (2014) The Y141C knockin mutation in RDS leads to complex phenotypes in the mouse. Hum Mol Genet 23(23):6260–6274

    Article  PubMed  PubMed Central  Google Scholar 

  • Tam BM, Moritz OL, Papermaster DS (2004) The C terminus of peripherin/rds participates in rod outer segment targeting and alignment of disk incisures. Mol Biol Cell 15:2027–2037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wrigley JD, Ahmed T, Nevett CL et al (2000) Peripherin/rds influences membrane vesicle morphology. Implications for retinopathies. J Biol Chem 275:13191–13194

    Article  CAS  PubMed  Google Scholar 

  • Wroblewski JJ, Wells JA 3rd, Eckstein A et al (1994) Macular dystrophy associated with mutations at codon 172 in the human retinal degeneration slow gene. Ophthalmology 101:12–22

    Article  CAS  PubMed  Google Scholar 

  • Yang Z, Li Y, Jiang L et al (2004) A novel RDS/peripherin gene mutation associated with diverse macular phenotypes. Ophthalmic Genet 25:133–145

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institutes of Health (EY010609-MIN, T32EY023202-MWS), the Foundation Fighting Blindness, and the Oklahoma Center for the Advancement of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muna I. Naash .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Stuck, M., Conley, S., Naash, M. (2016). RDS Functional Domains and Dysfunction in Disease. In: Bowes Rickman, C., LaVail, M., Anderson, R., Grimm, C., Hollyfield, J., Ash, J. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 854. Springer, Cham. https://doi.org/10.1007/978-3-319-17121-0_29

Download citation

Publish with us

Policies and ethics