Skip to main content

FAM161A and TTC8 are Differentially Expressed in Non-Allelelic Early Onset Retinal Degeneration

  • Conference paper
  • First Online:
Retinal Degenerative Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 854))

Abstract

Ciliary genes FAM161A and TTC8 have been implicated in retinal degeneration (RD) in humans and in dogs. The identification of FAM161A and TTC8 mutations in canine RD is exciting as there is the potential to develop novel large animal models for RD. However, the disease phenotypes in the dog and the roles of abnormal genes in disease pathology have yet to be fully characterized. The present study evaluated the expression patterns of FAM161A and TTC8 during normal retinal development in dogs, and in three non-allelic, early onset canine RD models at critical time points of the disease: RCD1, XLPRA2 and ERD. Both genes were differentially expressed in RCD1 and ERD, but not in XLPRA2. These results add evidence to the hypothesis that (a) mutations in many retinal genes have a cascade effect on the expression of multiple, possibly unrelated genes and (b) a large number and wide range of genes probably contribute to RD in general.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acland GM, Aguirre GD (1987) Retinal degenerations in the dog: IV. Early retinal degeneration (erd) in Norwegian elkhounds. Exp Eye Res 44:491–521

    Article  CAS  PubMed  Google Scholar 

  • Ansley SJ, Badano JL, Blacque OE et al (2003) Basal body dysfunction is a likely cause of pleiotropic Bardet–Biedl syndrome. Nature 425:628–633

    Article  CAS  PubMed  Google Scholar 

  • Bandah-Rozenfeld D, Mizrahi-Meissonnier L, Farhy C et al (2010) Homozygosity mapping reveals null mutations in FAM161A as a cause of autosomal-recessive retinitis pigmentosa. Am J Hum Genet 87:382–391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beltran WA, Hammond P, Acland GM et al (2006) A frameshift mutation in RPGR exon ORF15 causes photoreceptor degeneration and inner retina remodeling in a model of X-linked retinitis pigmentosa. Invest Ophthalmol Vis Sci 47:1669–1681

    Article  PubMed  Google Scholar 

  • Berta AI, Boesze-Battaglia K, Genini S et al (2011) Photoreceptor cell death, proliferation and formation of hybrid rod/S-cone photoreceptors in the degenerating STK38L mutant retina. PLoS ONE 6:e24074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Di Gioia SA, Letteboer SJ, Kostic C et al (2012) FAM161A, associated with retinitis pigmentosa, is a component of the cilia-basal body complex and interacts with proteins involved in ciliopathies. Hum Mol Genet 21:5174–5184

    Article  CAS  PubMed  Google Scholar 

  • Downs LM, Mellersh CS (2014) An Intronic SINE insertion in FAM161A that causes exon-skipping is associated with progressive retinal atrophy in Tibetan Spaniels and Tibetan Terriers. PLoS ONE 9:e93990

    Article  PubMed  PubMed Central  Google Scholar 

  • Downs LM, Wallin-Hakansson B, Bergstrom T et al (2014) A novel mutation in TTC8 is associated with progressive retinal atrophy in the golden retriever. Canine Genet Epidemiol 1:e21452

    Article  Google Scholar 

  • Farber DB, Danciger JS, Aguirre G (1992) The beta subunit of cyclic GMP phosphodiesterase mRNA is deficient in canine rod-cone dysplasia 1. Neuron 9:349–356

    Article  CAS  PubMed  Google Scholar 

  • Genini S, Beltran WA, Aguirre GD (2013) Up-regulation of tumor necrosis factor superfamily genes in early phases of photoreceptor degeneration. PLoS ONE 8:e85408

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldstein O, Kukekova AV, Aguirre GD et al (2010) Exonic SINE insertion in STK38L causes canine early retinal degeneration (erd). Genomics 96:362–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karlstetter M, Sorusch N, Caramoy A et al (2014) Disruption of the retinitis pigmentosa 28 gene Fam161a in mice affects photoreceptor ciliary structure and leads to progressive retinal degeneration. Hum Mol Genet 23(19):5197–5210

    Article  PubMed  Google Scholar 

  • Komaromy AM, Alexander JJ, Rowlan JS et al (2010) Gene therapy rescues cone function in congenital achromatopsia. Hum Mol Genet 19:2581–2593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langmann T, Di Gioia SA, Rau I et al (2010) Nonsense mutations in FAM161A cause RP28-associated recessive retinitis pigmentosa. Am J Hum Genet 87:376–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Miyadera K, Acland GM, Aguirre GD (2012) Genetic and phenotypic variations of inherited retinal diseases in dogs: the power of within- and across-breed studies. Mamm Genome 23:40–61

    Article  PubMed  PubMed Central  Google Scholar 

  • Parry HB (1953) Degenerations of the dog retina. II. Generalized progressive atrophy of hereditary origin. Br J Ophthalmol 37:487–502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray K, Baldwin VJ, Acland GM et al (1994) Cosegregation of codon 807 mutation of the canine rod cGMP phosphodiesterase beta gene and rcd1. Invest Ophthalmol Vis Sci 35:4291–4299

    CAS  PubMed  Google Scholar 

  • Riazuddin SA, Iqbal M, Wang Y et al (2010) A splice-site mutation in a retina-specific exon of BBS8 causes nonsyndromic retinitis pigmentosa. Am J Hum Genet 86:805–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suber ML, Pittler SJ, Qin N et al (1993) Irish setter dogs affected with rod/cone dysplasia contain a nonsense mutation in the rod cGMP phosphodiesterase beta-subunit gene. Proc Natl Acad Sci U S A 90:3968–3972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zach F, Grassmann F, Langmann T et al (2012) The retinitis pigmentosa 28 protein FAM161A is a novel ciliary protein involved in intermolecular protein interaction and microtubule association. Hum Mol Genet 21: 4573–4586

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Acland GM, Wu WX et al (2002) Different RPGR exon ORF15 mutations in Canids provide insights into photoreceptor cell degeneration. Hum Mol Genet 11:993–1003

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank K. Carlisle and the staff of the Retinal Disease Studies Facility for animal care. This study was supported by Foundation Fighting Blindness (FFB), NIH Grants EY06855, EY017549, and 5P30EY001583–38, and the Van Sloun Fund for Canine Genetic Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louise M Downs PhD .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Downs, L., Aguirre, G. (2016). FAM161A and TTC8 are Differentially Expressed in Non-Allelelic Early Onset Retinal Degeneration. In: Bowes Rickman, C., LaVail, M., Anderson, R., Grimm, C., Hollyfield, J., Ash, J. (eds) Retinal Degenerative Diseases. Advances in Experimental Medicine and Biology, vol 854. Springer, Cham. https://doi.org/10.1007/978-3-319-17121-0_27

Download citation

Publish with us

Policies and ethics