Skip to main content

Deformation and Damage of Thermally Bonded Nonwoven Networks

  • Chapter
  • First Online:
Mechanics of Advanced Materials

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Nonwovens, composed of randomly-oriented polymer-based fibres, possess unique properties, with features common to paper, plastic and textile materials. From various types of bonding technologies used in the nonwovens industry. This chapter focuses on thermal bonding and respective fabrics as it is one of the most widely used techniques. Understanding a mechanical behaviour of polymer-based nonwoven materials that includes large-strain deformation and damage can help to evaluate a response of nonwoven fibrous networks to various loading conditions. The main deformation and damage mechanisms are analysed by means of experimental assessment of fabrics in tension alongside damage evolution based on progressive failure of fibres. Finite-element simulation strategies to gain insight into their behaviour and to achieve quantitative exploration of a design space for these materials are also discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Information in this section on history of nonwovens is taken from Burkett [9] and Laufer [38]. The reader is referred to these works for more details.

References

  1. Albrecht, W., Fuchs, H., Kittelmann, W.: Nonwoven Fabrics: Raw Materials, Manufacture, Applications, Characteristics, Testing Processes. Wiley-VCH, Weinheim (2003)

    Google Scholar 

  2. Adanur, S., Liao, T.: Fiber arrangement characteristics and their effects on nonwoven tensile behavior. Text. Res. J. 69(11), 816–824 (1999)

    Article  Google Scholar 

  3. Barach, J.L., Rainard, L.W.: Effect of crimp on fiber behavior. Part II: Addition of crimp to wool fibers and its effect on fiber properties. Text. Res. J. 20, 308–316 (1950)

    Google Scholar 

  4. Batra, S.K.: Basics of Nonwoven Fabrics and Technology, NCRC. NC State University, Raleigh (1998)

    Google Scholar 

  5. Batra, S.K., Pourdeyhimi, B.: Introduction to Nonwovens Technology. DEStech Publications, Lancaster (2012)

    Google Scholar 

  6. Bhat, G.S., Jangala, P.K., Spruiell, J.E.: Thermal bonding of polypropylene nonwovens: effect of bonding variables on the structure and properties of the fabrics. J. Appl. Polym. Sci. 92(6), 3593–3600 (2004)

    Article  Google Scholar 

  7. Bhat, G.S., Malkan, S.R.: Extruded continuous filament nonwovens: advances in scientific aspects. J. Appl. Polym. Sci. 83(3), 572–585 (2002)

    Article  Google Scholar 

  8. Brown, A.: Measurement of crimp in single fibers. Text. Res. J. 25(12), 969–976 (1955)

    Article  Google Scholar 

  9. Burkett, M.E.: The Art of Felt Maker. Abbot Hall Art Gallery, Kendal (1979)

    Google Scholar 

  10. Chudleigh, P.W.: Image formation of fibers and fibers assemblies. Text. Res. J. 54, 813 (1984)

    Article  Google Scholar 

  11. Chidambaram, A., Davis, H., Batra, S.K. (ed.): Strength loss in thermally bonded polypropylene fibers. In: INTC 2000 Conference, Dallas (2000)

    Google Scholar 

  12. Cook, R.D., Malkus, D. S., Plesha, M.E.: Concepts and Applications of Finite Element Analysis. Wiley, New York (1984)

    Google Scholar 

  13. Cox, H.L.: The elasticity and strength of paper and other fibrous materials. Br. J. Appl. Phys. 3, 72–79 (1952)

    Article  Google Scholar 

  14. Datla, V.M.: The influence of fiber properties and processing conditions on the characteristics of needled fabrics. Master’s thesis, North Carolina State University USA, (2002)

    Google Scholar 

  15. Demirci, E.: Mechanical behaviour of thermally bonded bicomponent fibre nonwovens experimental analysis and numerical modelling. Ph.D. thesis, Loughborough University (2010)

    Google Scholar 

  16. Demirci, E., Acar, M., Pourdeyhimi, B., Silberschmidt, V.V.: Computation of mechanical anisotropy in thermally bonded bicomponent fibre nonwovens. Comput. Mater. Sci. 52(1), 157–163 (2011)

    Article  Google Scholar 

  17. Demirci, E., Acar, M., Pourdeyhimi, B., Silberschmidt, V.V.: Finite element modelling of thermally bonded bicomponent fibre nonwovens: tensile behaviour. Comput. Mater. Sci. 50(4), 1286–1291 (2011)

    Article  Google Scholar 

  18. Dharmadhikary, R.K., Gilmore, T.F., Davis, H.A., Batra, S.K.: Thermal bonding of nonwoven fabrics. Text. Prog. 26(2), 1–37 (1999)

    Article  Google Scholar 

  19. Farukh, F., Demirci, E., Acar, M., Pourdeyhimi, B., Silberschmidt, V.V.: Meso-scale deformation and damage in thermally bonded nonwovens. J. Mater. Sci. 48(6), 2334–2345 (2013)

    Article  Google Scholar 

  20. Farukh, F., Demirci, E., Sabuncuoğlu, B., Acar, M., Pourdeyhimi, B., Silberschmidt, V.V.: Characterisation and numerical modelling of complex deformation behaviour in thermally bonded nonwovens. Comput. Mater. Sci. 71, 165–171 (2013)

    Article  Google Scholar 

  21. Farukh, F., Demirci, E., Sabuncuoğlu, B., Acar, M., Pourdeyhimi, B., Silberschmidt, V.V.: Numerical modelling of damage initiation in low-density thermally bonded nonwovens. Comput. Mater. Sci. 64, 112–115 (2012)

    Article  Google Scholar 

  22. Farukh, F., Demirci, E., Sabuncuoğlu, B., Acar, M., Pourdeyhimi, B., Silberschmidt, V.V.: Numerical analysis of progressive damage in nonwoven fibrous networks under tension. Int. J. Solids Struct. 51, 1670–1685 (2014)

    Article  Google Scholar 

  23. Fedorova, N., Verenich, S., Pourdeyhimi, B.: Strength optimization of thermally bonded spunbond nonwovens. J. Eng. Fibers Fabr. 2(1), 38–48 (2007)

    Google Scholar 

  24. Gao, X., Huang, H.Y.:, Thermal bonding of nonwoven fabrics. http://www.engr.utk.edu/mse/pages/Textiles/Thermal Bonding.htm (2004). Accessed 29 Aug 2011

  25. Ghassemieh, E., Acar, M., Versteeg, H.: Microstructural analysis of non-woven fabrics using scanning electron microscopy and image processing. part 1: development and verification of the methods. Proc. Instit. Mech. Eng. Part L: J. Mater. Des. Appl. 216(3), 199–207 (2002)

    Google Scholar 

  26. Gilmore, T.F., Mi, Z.X., Batra, S.K.: Effect of bond point design and bond strength on the load-deformation of point bonded nonwovens: a computer-based study.In: nonwovens conference proceedings. NCRC, North Carolina (1993)

    Google Scholar 

  27. Hegde, R.R., Bhat, G.S., Campbell, R.A.: Thermal bonding of polypropylene films and fibers. J. Appl. Polym. Sci. 110(5), 3047–3058 (2008)

    Article  Google Scholar 

  28. Hearle, J.W.S., Stevenson, P.J.: Studies in nonwoven fabrics. Part IV: Prediction of tensile properties. Text. Res. J. 34(3), 181–191 (1964)

    Article  Google Scholar 

  29. Hou, X.: Experimental and Numerical Analysis of Deformation Of Low-Density Thermally Bonded Nonwovens, PhD Thesis, Loughborough University. (2010)

    Google Scholar 

  30. Hou, X., Acar, M., Silberschmidt, V.V.: 2D finite element analysis of thermally bonded nonwoven materials: continuous and discontinuous models. Comput. Mater. Sci. 46(3), 700–707 (2009)

    Article  Google Scholar 

  31. Kallmes, O.J.: Technique for determining the fibre orientation distribution function throughout the thickness of sheet. Tappi J. 52(4), 482–485 (1969)

    Google Scholar 

  32. Kim, H.S.: Orthotropic theory for the prediction of mechanical performance in thermally point-bonded nonwovens. Fibers Ploym. 5(2), 139–144 (2004)

    Article  Google Scholar 

  33. Kim, H.S., Pourdeyhimi, B., Abhiraman, A., Desai, P.: Characterizing structural changes in nonwoven fabrics during load-deformation experiments. J. Text. Apparel 1(1), 1–6 (2000)

    Google Scholar 

  34. Kim, H.S., Pourdeyhimi, B.: Computational modeling of mechanical performance in thermally point bonded nonwovens. J. Text. Apparel, Technol. Manag. 1(4), 1–7 (2001)

    Google Scholar 

  35. Kim, H.S., Pourdeyhimi, B., Desai, P., Abhiraman, A.S.: Anisotropy in the mechanical properties of thermally spot-bonded nonwovens: experimental observations. Text. Res. J. 71(11), 965–976 (2001)

    Article  Google Scholar 

  36. Kim, H.S., Deshpande, A., Pourdeyhimi, B., Abhiraman, A.S., Desai, P.: Characterizing structural changes in point-bonded nonwoven fabrics during load-deformation experiments. Text. Res. J. 71(2), 157–164 (2001)

    Article  Google Scholar 

  37. Kothari, V.K., Patel, P.C.: Theoretical model for predicting creep behaviour of nonwoven fabrics. Indian J. Fibre Text. Res. 26, 273–279 (2001)

    Google Scholar 

  38. Laufer, B.: The early history of felt making. Am. Anthropol. 32(1), 1–18 (1930)

    Article  MathSciNet  Google Scholar 

  39. Liao, T.Y., Adanur, S.: Predicting the mechanical properties of nonwoven geotextiles with the finite element method. Text. Res. J. 67(10), 753–760 (1997)

    Google Scholar 

  40. Lin, J., Xu, Z., Lei, C., Lou, C.: Effect of Fiber Arrangement on the Mechanical Properties of Thermally Bonded Nonwoven Fabrics. Text. Res. J. 73(10), 917–920 (2003)

    Article  Google Scholar 

  41. Michielsen, S., Wang, X.: Rapid morphology (property) changes at the bond periphery in thermal point-bonded nonwovens. Int. Nonwovens J. 11(2), 35–38 (2002)

    Google Scholar 

  42. Michielsen, S., Pourdeyhimi, B., Desai, P.: Review of thermally point-bonded nonwovens: materials, processes, and properties. J. Appl. Polym. Sci. 99(5), 2489–2496 (2006)

    Article  Google Scholar 

  43. Mishakov, V., Slutsker, G., Stalevich, A.: Modeling the viscoelasticity of nonwoven material with consideration of the irreversible strain component. Fibre Chem. 38(1), 50–54 (2006)

    Article  Google Scholar 

  44. Mueller, D.H., Kochmann, M.: Numerical modeling of thermobonded nonwovens. Int. Nonwovens J. 13(1), 56–62 (2004)

    Google Scholar 

  45. Petterson, D.R.: “Mechanics of Nonwoven Fabrics”, Indutrial and Engineering Chemistry, vol. 51(8), 902–903 (1959)

    Google Scholar 

  46. Pourdeyhimi, B., Ramanathan, R., Dent, R.: Measuring fiber orientation in nonwovens. Text. Res. J. 66(11), 713–722 (1996)

    Article  Google Scholar 

  47. Pourdeyhimi, B.: Mechanical performance of thermally bonded nonwovens. Notes, NC State University, NCRC, USA (2003)

    Google Scholar 

  48. Price, D.S., Jones, R., Harland, A.R.: Soccer ball anisotropy modelling. Mater. Sci. Eng., A 420(1–2), 100–108 (2006)

    Article  Google Scholar 

  49. Rawal, A.: A modified micromechanical model for the prediction of tensile behavior of nonwoven structures. J. Ind. Text. 36(2), 133–149 (2006)

    Article  Google Scholar 

  50. Ridruejo, A., González, C., LLorca, J.: Damage micromechanisms and notch sensitivity of glass-fiber non-woven felts: An experimental and numerical study. J. Mech. Phys. Solids. 58(10), 1628–1645 (2010)

    Google Scholar 

  51. Ridruejo, A., González, C., LLorca, J.: Micromechanisms of deformation and fracture of polypropylene nonwoven fabrics. Int. J. Solids Struct. 48(1), 153–162 (2011)

    Google Scholar 

  52. Ridruejo, A., González, C., LLorca, J.: A constitutive model for the in-plane mechanical behavior of nonwoven fabrics. Int. J. Solids Struct. 49(1), 2215–2229 (2012)

    Article  Google Scholar 

  53. Russell, S.J.: Handbook of Nonwovens. Woodhead, Cambridge (2007)

    Book  Google Scholar 

  54. Sabuncuoglu, B., Acar, M., Silberschmidt, V.V.: A parametric finite element analysis method for low-density thermally bonded nonwovens. Comput. Mater. Sci. 52(1), 164–170 (2012)

    Article  Google Scholar 

  55. Sabuncuoglu, B.: Development of parametric finite element modelling methods for nonwoven materials including rate dependent material behaviour. Ph.D. thesis, Loughborough University (2012)

    Google Scholar 

  56. Shiffler, D.A.: An examination of the stress-strain curve of crimped polyethylene terephthalate staple fibers. J. Text. Inst. 86(1), 1–9 (1995)

    Article  Google Scholar 

  57. Silberstein, M.N., Lhai-Ling, P., Boyce, M.C.: Elastic-plastic behaviour of nonwoven fibrous mats. J. Mech. Phys. Solids 60(2), 295–318 (2012)

    Article  MATH  Google Scholar 

  58. Stenemur, B.: Method and device for monitoring fibre orientation distribution and web uniformity on running webs of paper and nonwoven based light diffraction phenomenon. INDA J. Nonwoven Res. 4, 42–45 (1992)

    Google Scholar 

  59. Tanchis, G. (ed.): The Nonwovens, 1st edn. Fondazione Acimit, Italy (2008)

    Google Scholar 

  60. Wang, X.Y., Gong, R.H.: Thermally bonded nonwoven filters composed of bi-component polypropylene/polyester fiber. II. Relationships between fabric area density, air permeability, and pore size distribution. J. Appl. Polym. Sci. 102(3), 2264–2275 (2006)

    Article  Google Scholar 

  61. Wang, X., Michielsen, S.: Morphology gradients in thermally point-bonded poly(ethylene terephthalate) nonwovens. Text. Res. J. 72(5), 394–398 (2002)

    Article  Google Scholar 

  62. Wood, E.J.: Applying fourier and associated transforms to pattern characterization in textiles. Text. Res. J. 60(4), 212–220 (1990)

    Article  Google Scholar 

  63. Wust, C.J.: Private Communication (2013)

    Google Scholar 

  64. Xu, B., Ting, Y.: Measuring structural characteristics of fiber segments in nonwoven fabrics. Text. Res. J. 65(1), 41–48 (1995)

    Article  Google Scholar 

  65. Xu, B., Yu, L.: Determining fiber orientation distribution in nonwovens with hough transform techniques. Text. Res. J. 67(8), 563–571 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farukh Farukh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Farukh, F., Demirci, E., Acar, M., Pourdeyhimi, B., Silberschmidt, V.V. (2015). Deformation and Damage of Thermally Bonded Nonwoven Networks. In: Silberschmidt, V., Matveenko, V. (eds) Mechanics of Advanced Materials. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-17118-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17118-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17117-3

  • Online ISBN: 978-3-319-17118-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics