Basic Concepts of Systems Biology as Seen Through Systems Biologists’ Eyes: Metaphorical Imagination and Epistemic Presuppositions

  • Martin DöringEmail author
  • Regine Kollek
  • Anne Brüninghaus
  • Imme Petersen


After the successful structural analysis of the human and other organisms’ genomes the last decade witnessed a fundamental shift in the area of research in molecular biology: the move into Omics. It produced a plethora of data that require methodological and conceptual approaches to systematize, integrate, and interpret data which go beyond a linear understanding of biological processes and systems. The promise of the rapidly developing field of systems biology is to extend—if not overcome—the methodological and theoretical limits set by previous research undertaken in molecular biology. Taking this contemporary development seriously, this chapter investigates the framing of basic epistemic concepts (life, system, reductionism, holism, and model) by scientists working in systems biology. Based on a corpus of written evidence and interviews conducted with system biologists in Germany, we analyze the metaphorical frameworks underlying their conceptualization to tackle implicit meanings and the practical relevance ascribed to them. It becomes apparent that (to some extent) different professional backgrounds bear an impact on the framing of different concepts and heterogeneous interpretation prevails. The results underline the need for theoretical clarification of basic epistemic concepts in systems biology and the implementation of a science philosophy curriculum as a basic ingredient of university education. Both aspects are important to avoid methodological and theoretical fallacies that restrict the innovative potential of systems biology.


Systems biology Basic concepts Conceptual analysis Metaphor 


  1. Ahn A, Tewari M, Poon C-S, Phillips R (2006) The limits of reductionism in medicine: could systems biology offer an alternative? PLoS Med 3(6):e208PubMedCentralPubMedCrossRefGoogle Scholar
  2. Alberghina L, Westerhoff H (eds) (2005) Systems biology. Definitions and perspectives. Springer, New York, NYGoogle Scholar
  3. Allen G (2005) Mechanism, vitalism and organicism in late nineteenth and twentieth-century biology: the importance of historical context. Stud Hist Philos Sci 36(2):261–283CrossRefGoogle Scholar
  4. Alm E, Arkin A (2003) Biological networks. Curr Opin Struct Biol 13(2):193–202PubMedCrossRefGoogle Scholar
  5. Andersen H (2001) The history of reductionism versus holistic approaches to scientific research. Endeavour 25(4):153–156CrossRefGoogle Scholar
  6. Austin I (1962) How to do things with words. The William James Lectures delivered at Harvard University 1955. Clarendon, OxfordGoogle Scholar
  7. Ayala F (1974) Studies in the philosophy of biology: reduction and related problems. University of California Press, Berkeley, CACrossRefGoogle Scholar
  8. Ayala F, Arp R (eds) (2009) Contemporary debates in philosophy of biology. Wiley-Blackwell, OxfordGoogle Scholar
  9. Baedke J (2013) The epigenetic landscape in the course of time: Conrad Hal Waddington’s methodological impact on the life sciences. Stud Hist Philos Biol Biomed Sci 44:756–773PubMedCrossRefGoogle Scholar
  10. Bailer-Jones D (2003) When scientific models represent. Int Stud Philos Sci 17:59–74CrossRefGoogle Scholar
  11. Barabasi A (2002) Linked: the new science of networks. Perseus Publishing, CambridgeGoogle Scholar
  12. Barthez P-J (1806) Nouveaux éléments de la science de l’homme. Goujon et Brunot, ParisGoogle Scholar
  13. Bateson G (1972) Steps to an ecology of mind. Ballantine, New York, NYGoogle Scholar
  14. Beer S (1965) The world, the flesh and the metal. The prerogatives of systems. Nature 205:223–231PubMedCrossRefGoogle Scholar
  15. Bennett M, Monk N (2008) The flowering of systems approaches in plant and crop biology. New Phytol 179:567–568PubMedCrossRefGoogle Scholar
  16. Benton E (1974) Vitalism in nineteenth-century scientific thought: a typology and reassessment. Stud Hist Philos Sci A 5(1):17–48CrossRefGoogle Scholar
  17. Bergson H (1911) Creative evolution. Henry Holt and Company, New York, NYGoogle Scholar
  18. Bernard C (1878) Lecons sur les phénomènes de la vie communs aux animaux et aux végétaux. J.-B. Baillière et Fils, ParisCrossRefGoogle Scholar
  19. Bernard C (1983) An introduction to the study of experimental medicine. Dover Publications Inc, New York, NYGoogle Scholar
  20. Black M (1962) Models and metaphors. Cornell University Press, New York, NYGoogle Scholar
  21. Black M (1993) More about metaphor. In: Ortony A (ed) Metaphor and thought, 2nd edn. Cambridge University Press, Cambridge, pp 19–41CrossRefGoogle Scholar
  22. Bock von Wülfingen B (2007) Genetisierung der Zeugung. Eine Diskurs- und Metaphernanalyse reproduktionsgenetischer Zukünfte. Transcript, BielefeldCrossRefGoogle Scholar
  23. Bölker M, Gutman M, Hesse W (eds) (2008) Menschenbilder und Metaphern im Informationszeitalter. Lit, MünsterGoogle Scholar
  24. Bölker M, Gutmann M, Hesse W (eds) (2010) Information und Menschenbild. Springer, BerlinGoogle Scholar
  25. Böhme G, van den Daele W, Krohn W (1977) Experimentelle Philosophie. Ursprünge autonomer Wissenschaftsentwicklung. Suhrkamp, Frankfurt am MainGoogle Scholar
  26. Bono J (1999) A new Ithaca: toward a poetics of science. 2B J Ideas 14:63–73Google Scholar
  27. Bonß W, Hohlfeld R, Kollek R (1993) Kontextualität – ein neues Paradigma der Wissenschaftsanalyse? In: Bonß W, Hohlfeld R, Kollek R (eds) Wissenschaft als Kontext – Kontexte der Wissenschaft. Junius Verlag, Hamburg, pp 171–191Google Scholar
  28. Bonß W, Hohlfeld R, Kollek R (1994) Vorüberlegungen zu einem kontextualistischen Modell der Wissenschaftsentwicklung. Deutsche Zeitschrift für Philosophie 42(3):439–454Google Scholar
  29. Boogerd F, Bruggeman F, Hofmeyr J-H, Westerhoff H (2007a) Towards philosophical foundations of systems biology: introduction. In: Boogerd F, Bruggeman F, Hofmeyr J-H, Westerhoff H (eds) Systems biology: philosophical foundations. Elsevier, Amsterdam, pp 3–20CrossRefGoogle Scholar
  30. Boogerd F, Bruggeman F, Hofmeyr J-H, Westerhoff H (2007b) Afterthoughts as foundations for systems biology. In: Boogerd F, Bruggeman F, Hofmeyr J-H, Westerhoff H (eds) Systems biology: philosophical foundations. Elsevier, Amsterdam, pp 321–336CrossRefGoogle Scholar
  31. Bose B (2013) Systems biology: a biologist’s viewpoint. Progress Biophys Mol Biol 113(3):358–368CrossRefGoogle Scholar
  32. Bourdieu P (1976) Entwurf einer Theorie der Praxisauf der Grundlage der kabylischen Gesellschaft. Suhrkamp, Frankfurt am MainGoogle Scholar
  33. Bowker G, Star SL (2000) Sorting things out: classification and its consequences. MIT Press, Cambridge, MAGoogle Scholar
  34. Box JF (1978) R.A. Fisher: the life of a scientist. John Wiley and Sons, New York, NYGoogle Scholar
  35. Brown T (2008) Making truth: metaphor in science. University of Illinois Press, Champaign, ILGoogle Scholar
  36. Bühler K (1934) Sprachtheorie. Die Darstellungsfunktion der Sprache. UTB, StuttgartGoogle Scholar
  37. Byron J (2007) Whence philosophy of biology? Br J Philos Sci 58:409–422CrossRefGoogle Scholar
  38. Calvert J (2007) Patenting genomic objects: genes, genomes, function and information. Sci Cult 16(2):207–223CrossRefGoogle Scholar
  39. Calvert J, Fujimura J (2011) Calculating life? Dueling discourses in interdisciplinary systems biology. Stud Hist Philos Biol Biomed Sci 42(2):155–163PubMedCrossRefGoogle Scholar
  40. Calvert J, Joly P (2011) How did the gene become a chemical compound? Shifting ontologies of the gene and the patenting of DNA. Soc Sci Inf 50(2):157–177CrossRefGoogle Scholar
  41. Canghuilhem G (1994) A vital rationalist: selected writings. Zone Books, New York, NYGoogle Scholar
  42. Cannon W (1963) The wisdom of the body. Norton, New York, NYGoogle Scholar
  43. Carnap R (2011) The unity of science. Routledge, LondonGoogle Scholar
  44. Cassirer E (1923) Philosophie der symbolischen Formen. vol 1. Bruno Cassirer, BerlinGoogle Scholar
  45. Cassirer E (1985) Symbol, Technik, Sprache. Aufsätze aus den Jahren, 1997–1933. Meiner, HamburgGoogle Scholar
  46. Cassirer E (1993) Erkenntnis, Begriff, Kultur. Meiner, HamburgGoogle Scholar
  47. Charmaz K (2006) Constructing grounded theory: a practical guide through qualitative analysis. Sage, LondonGoogle Scholar
  48. Chawla S (2001) Linguistic and philosophical roots of our environmental crisis. In: Fill A, Mühlhäusler P (eds) The ecolinguistics reader. Language, ecology and environment. Continuum, London, pp 115–123Google Scholar
  49. Clarke A (2005) Situational analysis: grounded theory after the postmodern turn. Sage, LondonGoogle Scholar
  50. Conti F, Valerio M, Zbilut J, Giuliani A (2007) Will systems biology offer new holistic paradigms to life sciences? Syst Synth Biol 1:161–165PubMedCentralPubMedCrossRefGoogle Scholar
  51. Corbin J, Strauss A (2008) Basics of qualitative research: techniques and procedures for developing grounded theory. Sage, LondonGoogle Scholar
  52. Cornish-Bowden A, Cardenas M, Letelier J, Soto-Andrade J, Abarzua F (2004) Understanding the parts in terms of the whole. Biol Cell 96:713–717PubMedCrossRefGoogle Scholar
  53. Crick F (1958) Central dogma of molecular biology. Nature 227:561–563CrossRefGoogle Scholar
  54. Crick F (1966) Of molecules and men. University of Washington Press, Seattle, WAGoogle Scholar
  55. Crick F (1981) Life itself: its origin and nature. Simon and Schuster, LondonGoogle Scholar
  56. De Backer P, De Waele D, van Speybroeck L (2010) Ins and outs of systems biology vis-à-vis molecular biology: continuation or clear-cut? Acta Biotheor 58:15–49PubMedCrossRefGoogle Scholar
  57. De Klerk GJ (1979) Mechanism and vitalism. A history of the controversy. Acta Biotheor 28:1–10CrossRefGoogle Scholar
  58. Deamer D (2010) Special collection of essays: what is life? Introduction. Astrobiology 10(10):1001–1002PubMedCrossRefGoogle Scholar
  59. Denbigh K (1951) The thermodynamics of the steady state. Methuen, LondonGoogle Scholar
  60. Descartes R (2000) Philosophical essays and correspondence. Hackett, Indianapolis, INGoogle Scholar
  61. Döring M (2005) A sequence of ‘factishes’: the media metaphorical knowledge dynamics underlying the German press coverage of the Human Genome, June 2000 to June 2001. New Genet Soc 24(3):317–336PubMedCrossRefGoogle Scholar
  62. Döring M (2013) Leben systembiologisch. TA und metaphor assessment der Systembiologie. Technikfolgenabschätzung – Theorie und Praxis 21:36–42Google Scholar
  63. Döring M (2014) Metaphorische Moral in aktuellen biotechnologischen Diskursen. Ein Beitrag zur Analyse normativer Annahmen in der deutschen Presseberichterstattung zur Synthetischen Biologie. In: Junge M (ed) Methoden der Metaphernforschung und -analyse. VS Verlag, Wiesbaden, pp 215–229CrossRefGoogle Scholar
  64. Drack M (2009) Ludwig von Bertalanffy’s early system approach. Syst Res Behav Sci 26:563–572CrossRefGoogle Scholar
  65. Drack M (2013) Towards the system heuristics of Paul Weiss. Annal Hist Philos Biol 16:69–80Google Scholar
  66. Drack M, Apfalter W (2007) Is Paul A. Weiss and Ludwig von Bertalanffy’s system thinking still valid today? Syst Res Behav Sci 24:537–546CrossRefGoogle Scholar
  67. Drack M, Wolkenhauer O (2011) System approaches of Weiss and Bertalanffy and their relevance for systems biology today. Semin Cancer Biol 21:150–155PubMedCrossRefGoogle Scholar
  68. Driesch H (1914) The history and theory of vitalism. Macmillian and Company, LondonCrossRefGoogle Scholar
  69. Dupré J, O’Malley M (2007) Metagenomics and biological ontology. Stud Hist Philos Biol Biomed Sci 38(4):834–846PubMedCrossRefGoogle Scholar
  70. Elsasser W (1958) The physical foundation of biology. Pergamon, OxfordGoogle Scholar
  71. Elsasser W (1961) Quanta and the concept organismic law. J Theor Biol 1:27–58PubMedCrossRefGoogle Scholar
  72. Elsasser W (1998) Reflections on a theory of organisms. Holism in Biology. Johns Hopkins University Press, Baltimore, MDGoogle Scholar
  73. Falk R (1986) What is a gene? Stud Hist Philos Sci 17(2):133–173PubMedCrossRefGoogle Scholar
  74. Falk R (2010) What is a gene? - revisited. Stud Hist Philos Biol Biomed Sci 41(4):396–406PubMedCrossRefGoogle Scholar
  75. Fang FC, Casadevall A (2011) Reductionistic and holistic science. Editorial. Infect Immun 79(4):1401–1404PubMedCentralPubMedCrossRefGoogle Scholar
  76. Federoff H, Gostin L (2009) Evolving from reductionism to holism: is there a future for systems medicine? JAMA 302:994–996PubMedCrossRefGoogle Scholar
  77. Feigl H (1981a) The origin and spirit of logical positivism. In: Cohen R (ed) Inquiries and provocations. Springer, Dordrecht, pp 21–37CrossRefGoogle Scholar
  78. Feigl H (1981b) The power of positivistic thinking. In: Cohen R (ed) Inquiries and provocations. Springer, Dordrecht, pp 38–56CrossRefGoogle Scholar
  79. Fine A (1993) Fictionalism. Midw Stud Philos 18:1–18CrossRefGoogle Scholar
  80. Fisher R (1930) The genetical theory of natural selection. Clarendon, OxfordCrossRefGoogle Scholar
  81. Fleck L (2011) Denkstile und Tatsachen: Gesammelte Schriften und Zeugnisse. Suhrkamp, Frankfurt am MainGoogle Scholar
  82. Forgó N, Kollek R, Arning M, Kruegel T, Petersen I (2010) Ethical and legal requirements for transnational genetic research. Beck, MünchenCrossRefGoogle Scholar
  83. FOX Keller E (1992) Secrets of life, secrets of death: essays on language, gender and science. Routledge, and reposition it in the bibliography (Line 3404–3405)Google Scholar
  84. Fox-Keller E (1995) Refiguring life: metaphors of twentieth-century biology. The Wellek library lecture series at the University of California, Irvine. Columbia University Press, New York, NYGoogle Scholar
  85. Franceschelli S, Imbert C (2009) Computer simulations as experiments. Synthese 169(3):557–574CrossRefGoogle Scholar
  86. Frigg R (2006) Scientific representation and the semantic view of theories. Theoria 55:37–53Google Scholar
  87. Frigg R, Reiss J (2009) The philosophy of simulation: hot new issues or same old stew? Synthese 169(3):593–613CrossRefGoogle Scholar
  88. Fujimura J (2005) Postgenomic futures: translations across the machine-nature border in systems biology. New Genet Soc 24(2):195–225CrossRefGoogle Scholar
  89. Ganti T (2003) The principles of life. Oxford University Press, OxfordCrossRefGoogle Scholar
  90. Gentner D, Jeziorski M (1993) The shift from metaphor to analogy in Western science. In: Ortony A (ed) Metaphor and thought, 2nd edn. Cambridge University Press, Cambridge, pp 447–480CrossRefGoogle Scholar
  91. Gibbs R (1994) The poetics of mind. Figurative thought, language, and understanding. Cambridge University Press, CambridgeGoogle Scholar
  92. Gibson D et al (2010) Creation of a bacterial cell controlled by chemical synthesized genome. Science 329(5987):52–56PubMedCrossRefGoogle Scholar
  93. Giere R (1988) Explaining science: a cognitive approach. University of Chicago Press, Chicago, ILCrossRefGoogle Scholar
  94. Giere RN (2004) How models are used to represent reality. Philos Sci 71:742–752Google Scholar
  95. Goodman N (1968) Languages of art: an approach to a theory of symbols. Bobbs-Merrill, Indianapolis, INGoogle Scholar
  96. Greek R, Rice M (2012) Animal models and conserved processes. Theor Biol Med Model 40:1–33Google Scholar
  97. Green S, Wolkenhauer O (2012) Integration in action. EMBO Rep 13:769–771PubMedCentralPubMedCrossRefGoogle Scholar
  98. Griesemer J, Star SL (1989) Institutional ecology, ‘translations’ and boundary objects: amateurs and professionals in Berkeley’s Museum of Vertebrate Zoology, 1907–1939. Soc Stud Sci 19:387–420CrossRefGoogle Scholar
  99. Haber F (1975) The cathedral clock and the cosmological clock metaphor. In: Fraser J, Lawrence N (eds) The Study of time II. Proceedings of the Second Conference of the International Society for the Study of Time Lake Yamanaka – Japan. Springer, Heidelberg, pp 399–416Google Scholar
  100. Haraway D (2004) Crystal, fabrics, and fields: metaphors that shape embryos. North Atlantic Books, Berkeley, CAGoogle Scholar
  101. Harrington A (1995) Metaphoric connections: holistic science in the shadow of the Third Reich. Soc Res 62(2):357–385Google Scholar
  102. Harris T (2003) Data models and the acquisition and manipulation of data. Philos Sci 70:1508–1517CrossRefGoogle Scholar
  103. Hartwell L, Hopfield J, Leibler S, Murray A (1999) From molecular to modular cell biology. Nature 402:C47–C52PubMedCrossRefGoogle Scholar
  104. Hastrup K, Skrydstrup M (eds) (2012) The social life of climate models: anticipating nature. Routledge, LondonGoogle Scholar
  105. Hein H (1972) The endurance of the mechanism-vitalism controversy. J Hist Biol 5(1):159–188PubMedCrossRefGoogle Scholar
  106. Hesse M (1966) Models and analogies in science. Notre Dame University Press, Notre Dame, INGoogle Scholar
  107. Hesse M (1970) Theories and the transitivity of confirmation. Philos Sci 37:50–63CrossRefGoogle Scholar
  108. Hesse M (2005) Forces and fields: the concept of action at a distance in the history of physics. Dover Publications, New York, NYGoogle Scholar
  109. Hobsbawm E, Ranger T (eds) (1992) The invention of tradition. Cambridge University Press, CambridgeGoogle Scholar
  110. Hood L (2000) What is systems biology? Institute for Systems Biology, Seattle, WA, Accessed 18 Nov 2014Google Scholar
  111. Hood L, Rowen L, Galas D, Aichinson J (2008) Systems biology at the Institute for Systems Biology. Brief Funct Genomics 7(4):239–248CrossRefGoogle Scholar
  112. Hughes R (1997) Models and representation. Philos Sci 64:325–336CrossRefGoogle Scholar
  113. Hull D, Ruse M (eds) (2007) The Cambridge companion to the philosophy of biology. Cambridge University Press, CambridgeGoogle Scholar
  114. Ideker T, Galitski T, Hood L (2001) A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet 2:343–372PubMedCrossRefGoogle Scholar
  115. Ingalls B (2013) Mathematical modeling in systems biology. MIT Press, Harvard, MAGoogle Scholar
  116. Jäkel O (1997) Metaphern in abstrakten Diskurs-Domänen. Eine kognitiv-linguistische Untersuchung anhand der Bereiche Geistestätigkeit, Wirtschaft und Wissenschaft. Lang, Frankfurt am MainGoogle Scholar
  117. Johnson M (1987) The Body in the mind. The bodily basis of meaning, imagination, and reason. Chicago University Press, Chicago, ILGoogle Scholar
  118. Johnson M (1993) Moral imagination: implications of cognitive science for ethics. University of Chicago Press, Chicago, ILGoogle Scholar
  119. Johnson M (2007) The meaning of the body: aesthetics of human understanding. University of Chicago Press, Chicago, ILCrossRefGoogle Scholar
  120. Kaiser MI (2011) The limits of reductionism in the life sciences. Hist Philos Life Sci 33(4):453–476PubMedGoogle Scholar
  121. Kaneko K (2006) Life: an introduction to complex systems biology. Springer, New York, NYGoogle Scholar
  122. Kant I (1993) Kritik der Urteilskraft. Meiner, HamburgGoogle Scholar
  123. Kastenhofer K (2013) Two sides of the same coin? The (techno)epistemic cultures of systems and synthetic biology. Stud Hist Philos Biol Biomed Sci 44(2):130–140PubMedCrossRefGoogle Scholar
  124. Kather R (2003) Was ist Leben? Philosophische Positionen und Perspektiven. Wissenschaftliche Buchgesellschaft, DarmstadtGoogle Scholar
  125. Katherndahl D (2014) More than metaphor! J Eval Clin Pract 20:692–694CrossRefGoogle Scholar
  126. Kay LE (1997) Cybernetics, information, life: the emergence of scriptural representations of heredity. Configurations 5:23–91PubMedCrossRefGoogle Scholar
  127. Kay LE (2000) Who wrote the book of life? A history of the genetic code. Stanford University Press, Stanford, CAGoogle Scholar
  128. Keller EF (2002) Making sense of life: explaining biological development with models, metaphors, and machines. Harvard University Press, Cambridge, MAGoogle Scholar
  129. Keller EF (2010) The mirage of a space between nature and nurture. Duke University Press, Durham, NCCrossRefGoogle Scholar
  130. Kitano H (2002a) Systems biology: a brief overview. Science 295:1662–1664PubMedCrossRefGoogle Scholar
  131. Kitano H (2002b) Computational systems biology. Nature 420:206–210PubMedCrossRefGoogle Scholar
  132. Klein C (2009) Reduction without reductionism: a defense of Nagel on connectability. Philos Q 59:39–53CrossRefGoogle Scholar
  133. Klipp E, Herwig R, Kowald A, Wierling C, Lerach H (2005) Systems biology in practice. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  134. Klipp E, Liebermeister W, Wieling C, Kowald A, Lehrach H, Herwig R (2009) Systems biology: a textbook. Wiley-VCH, WeinheimGoogle Scholar
  135. Klir G (1991) Facets of systems science. Plenum Press, New York, NYCrossRefGoogle Scholar
  136. Knorr Cetina K (1981) The manufacture of knowledge – an essay on the constructivist and contextual nature of science. Pergamon Press, OxfordGoogle Scholar
  137. Knorr Cetina K (1999) Epistemic cultures: how the sciences make knowledge. Harvard University Press, Cambridge, MAGoogle Scholar
  138. Koch I, Reisig W, Schreiber F (eds) (2011) Modeling in systems biology: the Petri Net approach. Springer, LondonGoogle Scholar
  139. Kohler R (1971) The background to Eduard Buchner’s discovery of cell-free fermentation. J Hist Biol 4(1):35–61PubMedCrossRefGoogle Scholar
  140. Kohler R (1972) The reception of Eduard Buchner’s discovery of cell-free fermentation. J Hist Biol 5(2):327–353PubMedCrossRefGoogle Scholar
  141. Kollek R (1990) The limits of experimental knowledge. A feminist perspective on the ecological risks of genetic engineering. Issues Reprod Genet Eng 3(2):125–135PubMedGoogle Scholar
  142. Krohs U (2004) Eine Theorie biologischer Theorien: Status und Gehalt von Funktionsaussagen und informationstheoretischen Modellen. Springer, BerlinGoogle Scholar
  143. Krohs U (2013) Philosophical and foundational issues in systems biology. In: Dubitzky W, Wolkenhauer O, Cho K-H, Yokota H (eds) Encyclopedia of systems biology. Springer, New York, NY, pp 1698–1702CrossRefGoogle Scholar
  144. Krohs U, Callebaut W (2007) Data without models merging with models without data. In: Boogerd F, Bruggeman F, Hofmeyr J-H, Westerhoff H (eds) Systems biology: philosophical foundations. Elsevier, Amsterdam, pp 181–213CrossRefGoogle Scholar
  145. Krohs U (2004) Eine Theorie biologischer Theorien: Status und Gehalt von Funktionsaussagen und informationstheoretischen Modellen. Springer, BerlinGoogle Scholar
  146. Kruse J, Biesel K, Schmieder C (2012) Eine replik auf: Schmitt, Rudolf (2011). Review essay: rekonstruktive und andere metaphernanalysen. Forum Qual Soz Forsch 13(1):Art. 2. Accessed 18 Nov 2014
  147. Kuhn T (1993) Metaphor in science. In: Ortony A (ed) Metaphor and thought, 2nd edn. Cambridge University Press, Cambridge, pp 533–542CrossRefGoogle Scholar
  148. Lakoff G, Johnson M (1980) Metaphors we live by. University of Chicago Press, Chicago, ILGoogle Scholar
  149. Lakoff G (1987) Women, fire, and dangerous things. What categories reveal about the mind. Chicago University Press, Chicago, ILCrossRefGoogle Scholar
  150. Lakoff G, Johnson M (1999) Philosophy in the flesh. The embodied mind and its challenge to Western thought. Basic Books, Chicago, ILGoogle Scholar
  151. Laubichler M, Wagner G (2001) How molecular is molecular developmental biology? A reply to Alex Rosenberg’s reductionism redux: computing the embryo. Biol Philos 16(1):53–68CrossRefGoogle Scholar
  152. László E (1972) Introduction to systems philosophy: toward a new paradigm of contemporary thought. Gordon and Breach Science Publishers, LondonGoogle Scholar
  153. Leonelli S, Ankeny R (2012) Re-thinking organisms: the epistemic impact of databases on model organism biology. Stud Hist Philos Biol Biomed Sci 43:29–36PubMedCrossRefGoogle Scholar
  154. Li S (2009) Network systems underlying Traditional Chinese Medicine syndrome and herb formula. Curr Bioinform 4:188–196CrossRefGoogle Scholar
  155. Liebert W-A (1995) Metaphernreflexion in der Virologie. Das theoriesprachliche Lexikon der Metaphernmodelle als Sprachreflexionsmittel im Forschungsprozess. Eine exemplarische Studie am Beispiel der Aids forschung. Universität Mannheim, MannheimGoogle Scholar
  156. Lloyd E (1984) A semantic approach to the structure of population genetics. Philos Sci 51:242–264CrossRefGoogle Scholar
  157. Lloyd E (1994) The structure and confirmation of evolutionary theory. Princeton University Press, Princeton, NJGoogle Scholar
  158. Loeb J (1964) The mechanistic conception of life. Belknap, Cambridge, MACrossRefGoogle Scholar
  159. Lu A-P, Bian Z-X, Chen KJ (2012) Bridging the traditional Chinese medicine pattern classification and biomedical disease diagnosis with systems biology. Chin J Integr Med 18(12):883–890PubMedCrossRefGoogle Scholar
  160. Maasen S, Weingart P (2000) Metaphors and the dynamics of knowledge. Routledge, LondonCrossRefGoogle Scholar
  161. MacCay D (1965) Man as mechanism. The open mind and other essays. Inter-Varsity Press Tinker, LeicesterGoogle Scholar
  162. MacLeod M, Nersessian NJ (2014) Strategies for coordinating experimentation and Modeling in Integrative Systems Biology. J Exp Zool B Mol Dev Evol 322:230–239Google Scholar
  163. Magnani L, Nersessian N (eds) (2002) Model-based reasoning: science, technology, values. Kluwer, DordrechtGoogle Scholar
  164. Mambrey P, Tepper A (2000) Technology assessment as metaphor assessment. Visions guiding the development of information and communications technologies. In: Grin J, Grunwald A (eds) Vision assessment: shaping technology in 21st century society. Springer, Berlin, pp 33–51CrossRefGoogle Scholar
  165. Marteau T, Richards M (eds) (1996) The troubled helix. Social and psychological implications of the new human genetics. Cambridge University Press, CambridgeGoogle Scholar
  166. Massoud T, Hademenos G, Young W, Gao E, Pile-Spellman J, Uela F (1998) Principles and philosophy of modeling in biomedical research. J Feder Am Soc Exp Biol 12:275–285Google Scholar
  167. Maynard-Smith J (1986) The problems of biology. Oxford University Press, OxfordGoogle Scholar
  168. Mayr E (1997) This is biology: the science of the living world. Harvard University Press, Cambridge, MAGoogle Scholar
  169. Mayr E, Provine W (eds) (1988) The evolutionary synthesis: perspectives on the unification of biology. Harvard University Press, Cambridge, MAGoogle Scholar
  170. Mazzochi F (2012) Complexity and the reductionism-holism debate in systems biology. Wiley Interdiscip Rev Syst Biol Med 4(5):413–427CrossRefGoogle Scholar
  171. Mesarovic M (1968) Systems theory and biology—view of a theoretician. In: Mesarovic M (ed) System theory and biology. Springer, New York, NY, pp 59–87CrossRefGoogle Scholar
  172. Mesarovic M, Sreenath S, Keene J (2004) Search for organizing principles: understanding in systems biology. Syst Biol 1:19–27CrossRefGoogle Scholar
  173. Mesarovic M, Takahara Y (1972) Mathematical theory of general systems. Academic, Waltham, MAGoogle Scholar
  174. Mesarovic M, Takahara Y (1975) General systems theory. Academic, New York, NYGoogle Scholar
  175. Mesarovic M, Takahara Y (1988) Abstract systems theory. Springer, New York, NYGoogle Scholar
  176. Monod J (1970) Le hasard et la nécessité: essai sur la philosophie naturelle de la biologie moderne. Seuil, ParisGoogle Scholar
  177. Monod J, Bornek E (1971) Of microbes and life. Columbia University Press, New York, NYGoogle Scholar
  178. Morange M (2000) The history of molecular biology. Harvard University Press, Cambridge, MAGoogle Scholar
  179. Morange M (2008) The death of molecular biology? Hist Philos Life Sci 39(1):31–42Google Scholar
  180. Morange M (2009) Life explained. Yale University Press, New Haven, CTGoogle Scholar
  181. Morgan L (1923) Emergent evolution. Henry Holt and Company, New York, NYGoogle Scholar
  182. Morrison M (2009) Fictions, representations and reality. In: Suárez M (ed) Fictions in science. Philosophical essays on modelling and idealisation. Routledge, London, pp 110–135Google Scholar
  183. Murphy M, O’Neill L (eds) (1997) What is life? The next fifty years: speculations on the future of biology. Cambridge University Press, CambridgeGoogle Scholar
  184. Nagel E (1960) The meaning of reduction in the natural sciences. In: Danto A, Morgenbesser S (eds) Philosophy of science. Meridian Books, Cleveland, OH, pp 288–312Google Scholar
  185. Nagel E (1961) The structure of science: problems in the logic of scientific explanation. Harcourt, Brace and World, New York, NYGoogle Scholar
  186. Nagel T (1998) Reductionism and antireductionism. In: Bock GR, Goode JA (eds) The limits of reductionism in biology, vol 213, Novartis foundation symposium. John Wiley and Sons, Chichester, NY, pp 3–14Google Scholar
  187. Nerlich B, Clarke D (2003) Anatomy of a media event: how arguments clashed in the 2001 human cloning debate. New Genet Soc 22(1):43–59PubMedCrossRefGoogle Scholar
  188. Nerlich B, Dingwall R, Clarke D (2002) The book of life: how the competition of the Human Genome Project was revealed to the public. Health 6(4):445–469Google Scholar
  189. Nerlich B, Elliott R, Larson B (eds) (2009) Communicating biological sciences: ethical and metaphorical dimensions. Ashgate, AldershotGoogle Scholar
  190. Nicholson D (2012) The concept of mechanism in biology. Stud Hist Philos Biol Sci 42:152–163CrossRefGoogle Scholar
  191. Nicholson D (2013) Organisms≠machines. Stud Hist Philos Biol Sci 44:669–678CrossRefGoogle Scholar
  192. Noble D (2008a) The music of life: biology beyond genes. Oxford University Press, OxfordGoogle Scholar
  193. Noble D (2008b) Claude Bernard, the first systems biologist, and the future of physiology. Exp Physiol 93(1):16–26PubMedCrossRefGoogle Scholar
  194. Olby R (1971) Schrödinger’s problem: what is life. J Hist Biol 4(1):119–148PubMedCrossRefGoogle Scholar
  195. O’Malley M, Dupré J (2005) Fundamental issues in systems biology. Bioessays 27:1270–1276PubMedCrossRefGoogle Scholar
  196. O’Malley M, Calvert J, Dupré J (2007) The study of socioethical issues in systems biology. Am J Bioeth 7(4):67–78PubMedCrossRefGoogle Scholar
  197. O’Malley M, Soyer O (2012) The roles of integration in molecular systems biology. Stud Hist Philos Biol Biomed Sci 43(1):58–68PubMedCrossRefGoogle Scholar
  198. Ofran Y (2008) The two cultures and systems biology: how philosophy starts where science ends. Eur Leg Towar New Paradig 13(5):589–604CrossRefGoogle Scholar
  199. Oparin A (1924) The origin of life. Moscow Worker Publisher, MoscowGoogle Scholar
  200. Oppenheim P, Putnam H (1958) The unity of science as a working hypothesis. In: Feigl H et al (eds) Minnesota studies in the philosophy of science, vol 2. Minnesota University Press, Minneapolis, MN, pp 3–36Google Scholar
  201. Ouzounis C, Mazière P (2006) Maps, books and other metaphors for systems biology. Biosystems 85(1):6–10PubMedCrossRefGoogle Scholar
  202. Palsson B (2011) Systems biology: simulation of dynamic network states. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  203. Parry S, Dupré J (eds) (2010) Nature after the genome. Wiley-Blackwell, HobokenGoogle Scholar
  204. Patel M, Nagl S (2010) The role of model integration in complex systems modeling. Springer, New York, NYCrossRefGoogle Scholar
  205. Paton R (1996) Metaphors, models and bioinformation. Biosystems 38:155–162PubMedCrossRefGoogle Scholar
  206. Peacocke A (1976) Reductionism: a review of the epistemological issues and their relevance to biology and the problem of consciousness. Zygon 11:307–334CrossRefGoogle Scholar
  207. Peacocke A (1985) Reductionism in academic disciplines. Society for research into higher. Education & NFER-Nelson, GuildfordGoogle Scholar
  208. Piaget J (1954) The construction of reality in the child. Basic Books, New York, NYCrossRefGoogle Scholar
  209. Pickering A (1995) The mangle of practice time, agency, and science. University of Chicago Press, ChicagoGoogle Scholar
  210. Pigliucci M (2014) Between holism and reductionism: a philosophical primer on emergence. Biol J Linn Soc 112:261–267CrossRefGoogle Scholar
  211. Polanyi M (1958) Personal knowledge: towards a post-critical philosophy. University of Chicago Press, Chicago, ILGoogle Scholar
  212. Polanyi M (1966) The tacit dimension. University of Chicago Press, Chicago, ILGoogle Scholar
  213. Polanyi M (1967) The growth of science in society. Minerva 5(4):533–545CrossRefGoogle Scholar
  214. Polanyi M (1968) Life’s irreducible structure. Science 160(3834):1308–1312PubMedCrossRefGoogle Scholar
  215. Polanyi M (1977) Meaning. Chicago University Press, Chicago, ILGoogle Scholar
  216. Porsch H (1986) Michael polanyi: a critical exposition. State University of New York Press, Albany, NYGoogle Scholar
  217. Putnam H (1981) Reason, truth and history. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  218. Putnam H (1988) Representation and reality. MIT Press, Cambridge, MAGoogle Scholar
  219. Putnam H (1991) Repräsentation und realität. Suhrkamp, Frankfurt am MainGoogle Scholar
  220. Putnam H (1993) Von einem realistischen standpunkt. Schriften zu sprache und wirklichkeit. Rowohlt, ReinbekGoogle Scholar
  221. Rheinberger H-J (1997) Toward a history of epistemic things: synthesizing proteins in the test tube. Stanford University Press, Stanford, CAGoogle Scholar
  222. Rheinberger H-J (2009) Vererbung. Fischer, Frankfurt am MainGoogle Scholar
  223. Rheinberger H-J (2010) An epistemology of the concrete: twentieth-century histories of life. Duke University Press, Durham, NCCrossRefGoogle Scholar
  224. Richardson R, Stephan M (2007) What physicalists should provide us with … In: Penco C, Beaney M, Vignolo M (eds.), Explaining the mental: naturalist and non-naturalist approaches to mental acts and processes. Newcastle: Cambridge Scholars Publishers, pp 207–221Google Scholar
  225. Roll-Hansen N (1984) E.S. Russell and J.H. Woodger: the failure of two twentieth-century opponents of mechanistic biology. J Hist Biol 17(3):399–428PubMedCrossRefGoogle Scholar
  226. Rosch E (1973) Natural categories. Cogn Psychol 4:328–350CrossRefGoogle Scholar
  227. Rosch E (1978) Principles of categorization. In: Rosch E, Lloyd BB (eds) Cognition and categorization. Lawrence Erlbaum Associates, Hillsdale, NJ, pp 27–48Google Scholar
  228. Rosch E, Mervis C, Wayne D, Johnson D, Boyes-Bream P (1976) Basic objects in natural categories. Cogn Psychol 8:382–439CrossRefGoogle Scholar
  229. Rosen R (1970a) Dynamical systems theory in biology. Wiley Interscience, New York, NYGoogle Scholar
  230. Rosen R (1970b) Optimality principles. Rosen Enterprises, New York, NYGoogle Scholar
  231. Rosen R (1978) Fundamentals of measurement and representation of natural systems. Elsevier Science, AmsterdamGoogle Scholar
  232. Rosen R (1985) Anticipatory systems: philosophical, mathematical and methodological foundations. Pergamon Press, OxfordGoogle Scholar
  233. Rosen R (2000) Essays on life itself. Columbia University Press, New York, NYGoogle Scholar
  234. Rosenberg A (1997) Reductionism redux: computing the embryo. Biol Philos 12(4):445–470CrossRefGoogle Scholar
  235. Ruse M (1988) The philosophy of biology today. State University of New York Press, Albany, NYGoogle Scholar
  236. Sattler R (1986) Biophilosophy. Analytic and holistic perspectives. Springer, New York, NYGoogle Scholar
  237. Schaffner KF (1969) The Watson-Crick model and reductionism. Br J Philos Sci 20(4):325–348CrossRefGoogle Scholar
  238. Schaffner KF (1993a) Discovery and explanation in biology and medicine. University of Chicago Press, Chicago, ILGoogle Scholar
  239. Schaffner KF (1993b) Theory structure, reduction, and disciplinary integration in biology. Biol Philos 8:319–347CrossRefGoogle Scholar
  240. Schaffner K (2002) Reductionism, complexity and molecular medicine: genetic chips and the globalization of the genome. In: van Regenmortel M, Hull D (eds) Promises and limits of reductionism in the biomedical sciences. John Wiley and Sons, Chichester, NY, pp 323–351CrossRefGoogle Scholar
  241. Schaffner K (2007) Theories, models, and equations in systems biology. In: Boogerd C, Bruggeman F, Hofmeyr J-H, Westerhoff H (eds) Systems biology: philosophical foundations. Elsevier, Amsterdam, pp 145–162CrossRefGoogle Scholar
  242. Schatzki T (1996) Social practices. A Wittgensteinian approach to human activity and the social. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  243. Schatzki T (2001) Practice in theory. In: Schatzki T, Knorr Cetina K, Savigny E (eds) The practice turn in contemporary theory. Routledge, London, pp 1–14Google Scholar
  244. Schatzki T, Knorr Cetina K, Savigny E (eds) (2001) The practice turn in contemporary theory. Routledge, LondonGoogle Scholar
  245. Schmitt R (2000) Skizzen zur Metaphernanalyse. Forum qualitative Sozialforschung 1(1). Accessed 18 Nov 2014
  246. Schmitt R (2005) Systematic metaphor analysis as a method of qualitative research. Qual Rep 10(2):358–394Google Scholar
  247. Schmitt R (2010) Metaphernanalyse. In: Mey G, Mruck K (eds) Handbuch Qualitative Forschung in der Psychologie. VS Verlag, Wiesbaden, pp 676–691CrossRefGoogle Scholar
  248. Schmitt R (2011) Systematische Metaphernanalyse als qualitative sozialwissenschaftliche Forschungsmethode. metaphorik. de 21:47–82Google Scholar
  249. Schmitt R (2014) Eine Übersicht über Methoden sozialwissenschaftlicher Metaphernanalysen. In: Junge M (ed) Methoden der Metaphernforschung und -analyse. Springer VS, Wiesbaden, pp 13–30CrossRefGoogle Scholar
  250. Schrödinger E (2012) What is life? With mind and matter and autobiographical sketches. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  251. Semino E (2008) Metaphor in discourse. Cambridge University Press, CambridgeGoogle Scholar
  252. Seth BP, Thaker VS (2014) Plant systems biology: insights, advances and challenges. Planta 240:33–54CrossRefGoogle Scholar
  253. Shore B (1996) Culture in mind. Cognition, culture, and the problem of meaning. Oxford University Press, OxfordGoogle Scholar
  254. Smuts J (1926) Holism and evolution. Viking, New York, NYGoogle Scholar
  255. Snobelen S (2012) The myth of the clockwork universe: Newton, newtonianism, and the enlightenment. In: Jacobs N, Firestone C (eds) The persistence of the sacred in modern though. University of Notre Dame Press, Notre Dame, IN, pp 149–184Google Scholar
  256. Sober E (1993) Philosophy of biology. Oxford University Press, OxfordGoogle Scholar
  257. Stange K (2005) The end of “naïve reductionism”: rise of systems biology or renaissance of physiology? Am J Physiol Cell Physiol 288(5):C968–C974CrossRefGoogle Scholar
  258. Steen G, Biernacka E, Dorst A, Kaal A, López-Rodríguez C, Pasma T (2010) Pragglejaz in practice. Finding metaphorically used words in natural discourse. In: Low G, Todd Z, Deignan A, Cameron L (eds) Researching and applying metaphor in the real world. John Benjamins, Amsterdam, pp 165–184CrossRefGoogle Scholar
  259. Sterelny K, Griffiths P (1999) Sex and death: an introduction to philosophy of biology. University of Chicago Press, Chicago, ILGoogle Scholar
  260. Stöckler M (1991) A short history of emergence and reductionism. In: Agazzi E (ed) The problem of reductionism in science. Kluwer, Alphen aan den Rijn, pp 71–90CrossRefGoogle Scholar
  261. Suárez M (2009) Scientific fictions as rules of inference. In: Suárez M (ed) Fictions in science. Philosophical essays on modelling and idealisation. Routledge, London, pp 158–178Google Scholar
  262. Suárez M, Solé A (2006) On the analogy between cognitive representation and truth. Theoria 55:27–36Google Scholar
  263. Suppes P (1960) A comparison of the meaning and uses of models in mathematics and the empirical sciences. Synthese 12:287–301CrossRefGoogle Scholar
  264. Suppes P (1962) Models of data. In: Nagel E, Suppes P, Tarski A (eds) Logic, methodology and philosophy of science: proceedings of the 1960 International Congress. Stanford University Press, Stanford, CA, pp 252–261Google Scholar
  265. Sweetser E (1990) From etymology to pragmatics: metaphorical and cultural aspects of semantic structure. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  266. Tabery J (2008) R.A. Fisher, Lancelot Hogben, and the origin(s) of genotype-environment interaction. J Hist Biol 41:717–761PubMedCrossRefGoogle Scholar
  267. Tin C, Poon C-S (2014) Integrative and reductionist approaches of modeling of breathing. In: Batzel J, Bachar M, Kappel F (eds) Mathematical modeling and validation in physiology. Applications to cardiovascular and respiratory systems. Springer, Heidelberg, pp 89–103Google Scholar
  268. Toepfer G (2005) Der begriff des lebens. In: Toepfer G, Krohs U (eds) Philosophie der biologie. Eine einführung. Suhrkamp, Frankfurt am Main, pp 157–174Google Scholar
  269. Tutton R, Corrigan O (eds) (2004) Genetic databases: socio-ethical issues in the collection and use of DNA. Routledge, LondonGoogle Scholar
  270. Ukrow R (2004) Nobelpreisträger Eduard Buchner (1860-1917). Ein leben für die chemie der gärung und - fast vergessen – für die organische chemie. Technische Universität Berlin, BerlinGoogle Scholar
  271. Ulett M (2014) Making the case for orthogenesis: the popularization of definitely directed evolution (1890–1926). Stud Hist Philos Biol Biomed Sci 45:124–132PubMedCrossRefGoogle Scholar
  272. Ullah M, Wolkenhauer O (2007) Family tree of Markov models in systems biology. IET Syst Biol 1:247–254PubMedCrossRefGoogle Scholar
  273. van Regenmortel M (2004) Biological complexity emerges from the ashes of genetic reductionism. J Mol Recognit 17:145–148PubMedCrossRefGoogle Scholar
  274. Verpoorte R, Choi Y, Kim H (2005) Ethnopharmacology and systems biology: a perfect holistic match. J Ethnopharmacol 100(1–2):53–56PubMedCrossRefGoogle Scholar
  275. Vico GB (1990) Prinzipien einer neuen Wissenschaft über die gemeinsame Natur der Völker. Teilband 1 und 2. Meiner, HamburgGoogle Scholar
  276. Vigotsky L (2012) Thought and language. MIT Press, Cambridge, MAGoogle Scholar
  277. von Bertalanffy L (1932) Theoretische Biologie. Gebrüder Bornträger, BerlinGoogle Scholar
  278. von Bertalanffy L (1949) Das biologische Weltbild. Francke, BernGoogle Scholar
  279. von Bertalanffy L (1950a) The theory of open systems in physics and biology. Science 111:23–29CrossRefGoogle Scholar
  280. von Bertalanffy L (1950b) An outline of general systems theory. Br J Philos Sci 1:139–164Google Scholar
  281. von Bertalanffy L (1968) General system theory. Brazillier, New York, NYGoogle Scholar
  282. Vrba E, Gould S (1986) The hierarchical expansion of sorting and selection: sorting and selection cannot be equated. Paleobiology 10:146–171Google Scholar
  283. Waddington C (1968) Towards a theoretical biology, vol 4. Edinburgh University Press, EdinburghGoogle Scholar
  284. Waddington C (1975) The evolution of an evolutionist. Edinburgh University Press, EdinburghGoogle Scholar
  285. Wang M, Lamers R, Korthout H, van Nesselroij J, Witkamp R, van der Heijden R, Voshol P, Havekes L, Verpoort R, van der Greef J (2005) Metabolomics in the context of systems biology: bridging traditional Chinese medicine and molecular pharmacology. Phytother Res 19:173–182PubMedCrossRefGoogle Scholar
  286. Weiss P (1925) Animal behaviour as system reaction: the orientation towards light and gravity in the resting postures of butterflies. Biol General 1:167–248Google Scholar
  287. Weiss P (1940) The problem of cell individuality. Am Nat 74:34–46CrossRefGoogle Scholar
  288. Weiss P (1973) The science of life. Futura Publishing, New York, NYGoogle Scholar
  289. Westerhoff H, Palsson B (2004) The evolution of molecular biology into systems biology. Nat Biotechnol 22(10):1249–1252PubMedCrossRefGoogle Scholar
  290. Westerhoff H, Winder C, Messiha H, Simeonidis E, Adamczyk M, Verma M, Bruggeman F, Dunn W (2009) Systems biology: the elements and principles of life. FEBS Lett 583:3882–3890PubMedCrossRefGoogle Scholar
  291. Wiener N (1948) Cybernetics or control and communication in the animal and machine. MIT Press, Boston, MAGoogle Scholar
  292. Williams E (2003) A cultural history of medical vitalism in enlightenment. Ashgate, FarnhamGoogle Scholar
  293. Williams R (1956) Biochemical individuality. The key for the genetotrophic concept. John Wiley and Sons, New York, NYGoogle Scholar
  294. Wolkenhauer O (2001) Systems biology: the reincarnation of systems theory applied in biology? Brief Bioinform Henri Stewart Publ 3:258–270CrossRefGoogle Scholar
  295. Wolkenhauer O (2007a) Interpreting Rosen. Artif Life 13:1–2CrossRefGoogle Scholar
  296. Wolkenhauer O (2007b) Defining systems biology: an engineering perspective. J Biotechnol 2:329–351Google Scholar
  297. Wolkenhauer O (2014) Why model? Front Physiol 5(Art 21):1–5Google Scholar
  298. Wolkenhauer O, Green S (2013) The search for organizing principles as a cure against reductionism in systems medicine. FEBS J 280(23):5938–5948Google Scholar
  299. Wolkenhauer O, Mesarovic M (2005) Feedback dynamics and cell function: why systems biology is called systems biology. Mol Biosyst 1(1):14–16PubMedCrossRefGoogle Scholar
  300. Wolkenhauer O, Green S (2013) The search for organizing principles as a cure against reductionism in systems medicine, in: The FEBS Journal 280/23, 5938–5948Google Scholar
  301. Woodger J (2001) Biological principles: a critical study. Routledge, LondonGoogle Scholar
  302. Ziman J (2000) Real science: what is and what it means. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  303. Zucker A (1981) Holism and reductionism in molecular biology. A view from genetics. J Med Phils 6(2):145–164CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Martin Döring
    • 1
    Email author
  • Regine Kollek
    • 1
  • Anne Brüninghaus
    • 1
  • Imme Petersen
    • 1
  1. 1.Research Centre for Biotechnology, Society and Environment (FSP BIOGUM)University of HamburgHamburgGermany

Personalised recommendations