Skip to main content

Adenosine in the Neurobiology of Schizophrenia: Potential Adenosine Receptor-Based Pharmacotherapy

  • Chapter
  • 1407 Accesses

Abstract

The pharmacological treatment of schizophrenia is currently based on restoring striatal dopamine and prefrontal cortex glutamate neurotransmission. However, these therapies are usually insufficient to completely manage all disease symptoms (i.e., negative and cognitive symptoms). Thus, the study of alternative and/or complementary neurotransmitter systems, which might impinge onto the etiology of schizophrenia, constitutes a big challenge for modern neuropsychiatry. Adenosine is a well known neuromodulator in the central nervous system (CNS) with beneficial properties for a number of brain disorders. The physiological effects of this nucleoside are mediated by G protein-coupled adenosine receptors, which have clearly evolved as drug targets for the pharmacotherapy of certain CNS diseases (e.g., Parkinson disease). Interestingly, it has been demonstrated that adenosine is able to modulate not only the dopaminergic but also glutamatergic system, thus representing a promising candidate to restore the schizophrenia-associated dopamine-glutamate imbalance that may underlie the origins of the disease. Accordingly, the development of drugs targeting adenosine receptors will constitute a worthwhile challenge for current neuropharmacology, because these compounds will definitively enrich the pharmacological arsenal and the pharmacotherapeutic opportunities surrounding schizophrenia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Drury AN, Szent-Gyorgyi A. The physiological activity of adenine compounds with especial reference to their action upon the mammalian heart. J Physiol. 1929;68:213–37. England.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Jacobson KA, Gao ZG. Adenosine receptors as therapeutic targets. Nat Rev Discov. 2006;5:247–64.

    Article  CAS  Google Scholar 

  3. Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H. Purinergic signalling in the nervous system: an overview. Trends Neurosci. 2009;32:19–29.

    Article  CAS  PubMed  Google Scholar 

  4. Boison D. Modulators of nucleoside metabolism in the therapy of brain diseases. Curr Top Med Chem. 2011;11:1068–86.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Burnstock G. Purinergic nerves. Pharmacol Rev. 1972;24:509–81.

    CAS  PubMed  Google Scholar 

  6. Burnstock G. Cotransmission. Curr Opin Pharmacol. 2004;4:47–52.

    Article  CAS  PubMed  Google Scholar 

  7. Zimmermann H. Biochemistry, localization and functional roles of ecto-nucleotidases in the nervous system. Prog Neurobiol. 1996;49:589–618.

    Article  CAS  PubMed  Google Scholar 

  8. Newby AC. Adenosine and the concept of “retaliatory metabolites”. Trends Biochem. 1984;9:42–4.

    Article  CAS  Google Scholar 

  9. Brown RA, Spina D, Page CP. Adenosine receptors and asthma. Br J Pharmacol. 2008;153(Suppl):S446–56.

    PubMed Central  CAS  PubMed  Google Scholar 

  10. Burnstock G, Fredholm BB, Verkhratsky A. Adenosine and ATP receptors in the brain. Curr Top Med Chem. 2011;11:973–1011.

    Article  CAS  PubMed  Google Scholar 

  11. Johnston-Cox HA, Ravid K. Adenosine and blood platelets. Purinergic Signal. 2011;7:357–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Barletta KE, Ley K, Mehrad B. Regulation of neutrophil function by adenosine. Arterioscler Thromb Vasc Biol. 2012;32:856–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Ernst PB, Garrison JC, Thompson LF. Much ado about adenosine: adenosine synthesis and function in regulatory T cell biology. J Immunol. 2010;185:1993–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Burnstock G. Purinergic regulation of vascular tone and remodelling. Auton Autacoid Pharmacol. 2009;29:63–72.

    Article  CAS  PubMed  Google Scholar 

  15. Vallon V, Mühlbauer B, Osswald H. Adenosine and kidney function. Physiol Rev. 2006;86:901–40.

    Article  CAS  PubMed  Google Scholar 

  16. Fredholm BB, Sollevi A. Cardiovascular effects of adenosine. Clin Physiol. 1986;6:1–21.

    Article  CAS  PubMed  Google Scholar 

  17. Sebastião AM, Ribeiro JA. Tuning and fine-tuning of synapses with adenosine. Curr Neuropharmacol. 2009;7:180–94.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Fredholm BB. Adenosine and lipolysis. Int J Obes. 1981;5:643–9.

    CAS  PubMed  Google Scholar 

  19. Sebastiao AM, Ribeiro JA. Fine-tuning neuromodulation by adenosine. Trends Pharmacol Sci. 2000;21:341–6.

    Article  CAS  PubMed  Google Scholar 

  20. Latini S, Pedata F. Adenosine in the central nervous system: release mechanisms and extracellular concentrations. J Neurochem. 2001;79:463–84.

    Article  CAS  PubMed  Google Scholar 

  21. Snyder SH. Adenosine as a neuromodulator. Annu Rev Neurosci. 1985;8:103–24.

    Article  CAS  PubMed  Google Scholar 

  22. Ferre S, Fuxe K. Adenosine as a volume transmission signal. A feedback detector of neuronal activation. Prog Brain Res. 2000;125:353–61.

    Article  CAS  PubMed  Google Scholar 

  23. Fredholm BB. Purinoceptors in the nervous system. Pharmacol Toxicol. 1995;76:228–39.

    Article  CAS  PubMed  Google Scholar 

  24. Pull I, McIlwain H. Adenine derivatives as neurohumoral agents in the brain. The quantities liberated on excitation of superfused cerebral tissues. Biochem J. 1972;130:975–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Sattin A, Rall TW. The effect of adenosine and adenine nucleotides on the cyclic adenosine 3’, 5’-phosphate content of guinea pig cerebral cortex slices. Mol Pharmacol. 1970;6:13–23.

    CAS  PubMed  Google Scholar 

  26. Degubareff T, Sleator Jr W. Effects of caffeine on mammalian atrial muscle, and its interaction with adenosine and calcium. J Pharmacol Exp Ther. 1965;148:202–14.

    CAS  PubMed  Google Scholar 

  27. Trost T, Stock K. Effects of adenosine derivatives on cAMP accumulation and lipolysis in rat adipocytes and on adenylate cyclase in adipocyte plasma membranes. Naunyn Schmiedebergs Arch Pharmacol. 1977;299:33–40.

    Article  CAS  PubMed  Google Scholar 

  28. Londos C, Cooper DM, Wolff J. Subclasses of external adenosine receptors. Proc Natl Acad Sci USA. 1980;77:2551–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Van Calker D, Muller M, Hamprecht B. Adenosine regulates via two different types of receptors, the accumulation of cyclic AMP in cultured brain cells. J Neurochem. 1979;33:999–1005.

    Article  PubMed  Google Scholar 

  30. Olah ME, Stiles GL. Adenosine receptor subtypes: characterization and therapeutic regulation. Annu Rev Pharmacol Toxicol. 1995;35:581–606.

    Article  CAS  PubMed  Google Scholar 

  31. Murray RD, Churchill PC. Effects of adenosine receptor agonists in the isolated, perfused rat kidney. Am J Physiol. 1984;247:H343–8.

    CAS  PubMed  Google Scholar 

  32. Anderson R, Sheehan MJ, Strong P. Characterization of the adenosine receptors mediating hypothermia in the conscious mouse. Br J Pharmacol. 1994;113:1386–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Yamamoto S, Nakanishi O, Matsui T, Shinohara N, Kinoshita H, Lambert C, et al. Intrathecal adenosine A1 receptor agonist attenuates hyperalgesia without inhibiting spinal glutamate release in the rat. Cell Mol Neurobiol. 2003;23:175–85.

    Article  CAS  PubMed  Google Scholar 

  34. De Lorenzo S, Veggetti M, Muchnik S, Losavio A. Presynaptic inhibition of spontaneous acetylcholine release induced by adenosine at the mouse neuromuscular junction. Br J Pharmacol. 2004;142:113–24.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  35. Scholz KP, Miller RJ. Inhibition of quantal transmitter release in the absence of calcium influx by a G protein-linked adenosine receptor at hippocampal synapses. Neuron. 1992;8:1139–50.

    Article  CAS  PubMed  Google Scholar 

  36. Schnurr M, Toy T, Shin A, Hartmann G, Rothenfusser S, Soellner J, et al. Role of adenosine receptors in regulating chemotaxis and cytokine production of plasmacytoid dendritic cells. Blood. 2004;103:1391–7.

    Article  CAS  PubMed  Google Scholar 

  37. MacGregor DG, Miller WJ, Stone TW. Mediation of the neuroprotective action of R-phenylisopropyl-adenosine through a centrally located adenosine A1 receptor. Br J Pharmacol. 1993;110:470–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Varani K, Portaluppi F, Gessi S, Merighi S, Ongini E, Belardinelli L, et al. Dose and time effects of caffeine intake on human platelet adenosine A(2A) receptors : functional and biochemical aspects. Circulation. 2000;102:285–9.

    Article  CAS  PubMed  Google Scholar 

  39. Carroll MA, Doumad AB, Li J, Cheng MK, Falck JR, McGiff JC. Adenosine2A receptor vasodilation of rat preglomerular microvessels is mediated by EETs that activate the cAMP/PKA pathway. Am J Physiol Renal Physiol. 2006;291:F155–61.

    Article  CAS  PubMed  Google Scholar 

  40. Popoli P, Betto P, Reggio R, Ricciarello G. Adenosine A2A receptor stimulation enhances striatal extracellular glutamate levels in rats. Eur J Pharmacol. 1995;287:215–7.

    Article  CAS  PubMed  Google Scholar 

  41. Nagel J, Schladebach H, Koch M, Schwienbacher I, Müller CE, Hauber W. Effects of an adenosine A2A receptor blockade in the nucleus accumbens on locomotion, feeding, and prepulse inhibition in rats. Synapse. 2003;49:279–86.

    Article  CAS  PubMed  Google Scholar 

  42. Scammell TE, Gerashchenko DY, Mochizuki T, McCarthy MT, Estabrooke IV, Sears CA, et al. An adenosine A2a agonist increases sleep and induces Fos in ventrolateral preoptic neurons. Neuroscience. 2001;107:653–63.

    Article  CAS  PubMed  Google Scholar 

  43. Kemp BK, Cocks TM. Adenosine mediates relaxation of human small resistance-like coronary arteries via A2B receptors. Br J Pharmacol. 1999;126:1796–800.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Donoso MV, López R, Miranda R, Briones R, Huidobro-Toro JP. A2B adenosine receptor mediates human chorionic vasoconstriction and signals through arachidonic acid cascade. Am J Physiol Heart Circ Physiol. 2005;288:H2439–49.

    Article  CAS  PubMed  Google Scholar 

  45. Zhong H, Belardinelli L, Maa T, Feoktistov I, Biaggioni I, Zeng D. A(2B) adenosine receptors increase cytokine release by bronchial smooth muscle cells. Am J Respir Cell Mol Biol. 2004;30:118–25.

    Article  CAS  PubMed  Google Scholar 

  46. Dubey RK, Gillespie DG, Mi Z, Jackson EK. Adenosine inhibits PDGF-induced growth of human glomerular mesangial cells via A(2B) receptors. Hypertension. 2005;46:628–34.

    Article  CAS  PubMed  Google Scholar 

  47. Zhong H, Shlykov SG, Molina JG, Sanborn BM, Jacobson MA, Tilley SL, et al. Activation of murine lung mast cells by the adenosine A3 receptor. J Immunol. 2003;171:338–45.

    Article  CAS  PubMed  Google Scholar 

  48. Das S, Cordis GA, Maulik N, Das DK. Pharmacological preconditioning with resveratrol: role of CREB-dependent Bcl-2 signaling via adenosine A3 receptor activation. Am J Physiol Heart Circ Physiol. 2005;288:H328–35.

    Article  CAS  PubMed  Google Scholar 

  49. Hinschen AK, Rose’Meyer RB, Headrick JP. Adenosine receptor subtypes mediating coronary vasodilation in rat hearts. J Cardiovasc Pharmacol. 2003;41:73–80.

    Article  CAS  PubMed  Google Scholar 

  50. Avila MY, Stone RA, Civan MM. Knockout of A3 adenosine receptors reduces mouse intraocular pressure. Invest Ophthalmol Vis Sci. 2002;43:3021–6.

    PubMed  Google Scholar 

  51. Stella L, de Novellis V, Marabese I, Berrino L, Maione S, Filippelli A, et al. The role of A3 adenosine receptors in central regulation of arterial blood pressure. Br J Pharmacol. 1998;125:437–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Kolakowski Jr LF. GCRDb: a G-protein-coupled receptor database. Receptors Channels. 1994;2:1–7.

    CAS  PubMed  Google Scholar 

  53. Fritze O, Filipek S, Kuksa V, Palczewski K, Hofmann KP, Ernst OP. Role of the conserved NPxxY(x)5,6 F motif in the rhodopsin ground state and during activation. Proc Natl Acad Sci U S A. 2003;100:2290–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Rovati GE, Capra V, Neubig RR. The highly conserved DRY motif of class A G protein-coupled receptors: beyond the ground state. Mol Pharmacol. 2007;71:959–64.

    Article  CAS  PubMed  Google Scholar 

  55. Dunwiddie TV, Masino SA. The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci. 2001;24:31–55.

    Article  CAS  PubMed  Google Scholar 

  56. Palmer TM, Stiles GL. Adenosine receptors. Neuropharmacology. 1995;34:683–94.

    Article  CAS  PubMed  Google Scholar 

  57. Rosin DL, Hettinger BD, Lee A, Linden J. Anatomy of adenosine A2A receptors in brain: morphological substrates for integration of striatal function. Neurology. 2003;61:S12–8.

    Article  CAS  PubMed  Google Scholar 

  58. Marala RB, Mustafa SJ. Direct evidence for the coupling of A2-adenosine receptor to stimulatory guanine nucleotide-binding-protein in bovine brain striatum. J Pharmacol Exp Ther. 1993;266:294–300.

    CAS  PubMed  Google Scholar 

  59. Ferre S, Karcz-Kubicha M, Hope BT, Popoli P, Burgueno J, Gutierrez MA, et al. Synergistic interaction between adenosine A2A and glutamate mGlu5 receptors: implications for striatal neuronal function. Proc Natl Acad Sci U S A. 2002;99:11940–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Feoktistov I, Biaggioni I. Adenosine A2B receptors. Pharmacol Rev. 1997;49:381–402.

    CAS  PubMed  Google Scholar 

  61. Haahr U, Friis S, Larsen TK, Melle I, Johannessen JO, Opjordsmoen S, et al. First-episode psychosis: diagnostic stability over one and two years. Psychopathology. 2008;41:322–9.

    Article  PubMed  Google Scholar 

  62. Bromet EJ, Kotov R, Fochtmann LJ, Carlson GA, Tanenberg-Karant M, Ruggero C, et al. Diagnostic shifts during the decade following first admission for psychosis. Am J Psychiatry. 2011;168:1186–94.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Tandon R, Gaebel W, Barch DM, Bustillo J, Gur RE, Heckers S, et al. Definition and description of schizophrenia in the DSM-5. Schizophr Res. 2013;150:3–10.

    Article  PubMed  Google Scholar 

  64. Javitt DC. Glutamatergic theories of schizophrenia. Isr J Psychiatry Relat Sci. 2010;47:4–16.

    PubMed  Google Scholar 

  65. Carlsson A. The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology. 1988;1:179–86.

    Article  CAS  PubMed  Google Scholar 

  66. Laruelle M, Kegeles LS, Abi-Dargham A. Glutamate, dopamine, and schizophrenia: from pathophysiology to treatment. Ann N Y Acad Sci. 2003;1003:138–58.

    Article  CAS  PubMed  Google Scholar 

  67. Leucht S, Heres S, Kissling W, Davis JM. Evidence-based pharmacotherapy of schizophrenia. Int J Neuropsychopharmacol. 2011;14:269–84.

    Article  CAS  PubMed  Google Scholar 

  68. Citrome L. Unmet needs in the treatment of schizophrenia: new targets to help different symptom domains. J Clin Psychiatry. 2014;74 Suppl 2:21–6.

    Article  CAS  Google Scholar 

  69. Ferre S, Agnati LF, Ciruela F, Lluis C, Woods AS, Fuxe K, et al. Neurotransmitter receptor heteromers and their integrative role in “local modules”: the striatal spine module. Brain Res Rev. 2007;55:55–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Fuxe K, Ferre S, Genedani S, Franco R, Agnati LF. Adenosine receptor-dopamine receptor interactions in the basal ganglia and their relevance for brain function. Physiol Behav. 2007;92:210–7.

    Article  CAS  PubMed  Google Scholar 

  71. Ferré S. Adenosine-dopamine interactions in the ventral striatum. Implications for the treatment of schizophrenia. Psychopharmacology (Berl). 1997;133:107–20.

    Article  Google Scholar 

  72. Ferre S, Ciruela F, Quiroz C, Lujan R, Popoli P, Cunha RA, et al. Adenosine receptor heteromers and their integrative role in striatal function. ScientificWorldJournal. 2007;7:74–85.

    Article  PubMed  Google Scholar 

  73. Ferre S, Borycz J, Goldberg SR, Hope BT, Morales M, Lluis C, et al. Role of adenosine in the control of homosynaptic plasticity in striatal excitatory synapses. J Integr Neurosci. 2005;4:445–64.

    Article  PubMed  Google Scholar 

  74. Ciruela F, Casado V, Rodrigues RJ, Lujan R, Burgueno J, Canals M, et al. Presynaptic control of striatal glutamatergic neurotransmission by adenosine A1-A2A receptor heteromers. J Neurosci. 2006;26:2080–7.

    Article  CAS  PubMed  Google Scholar 

  75. Lara DR, Souza DO. Schizophrenia: a purinergic hypothesis. Med Hypotheses. 2000;54:157–66.

    Article  CAS  PubMed  Google Scholar 

  76. Lara DR, Dall’Igna OP, Ghisolfi ES, Brunstein MG. Involvement of adenosine in the neurobiology of schizophrenia and its therapeutic implications. Prog Neuropsychopharmacol Biol Psychiatry. 2006;30:617–29.

    Article  CAS  PubMed  Google Scholar 

  77. Boison D, Singer P, Shen H-Y, Feldon J, Yee BK. Adenosine hypothesis of schizophrenia–opportunities for pharmacotherapy. Neuro-pharmacology. 2012;62:1527–43.

    CAS  Google Scholar 

  78. Luby ED, Cohen BD, Rosenbaum G, Gottlieb JS, Kelley R. Study of a new schizophrenomimetic drug; sernyl. AMA Arch Neurol Psychiatry. 1959;81:363–9.

    Article  CAS  PubMed  Google Scholar 

  79. Lodge D, Anis NA. Effects of phencyclidine on excitatory amino acid activation of spinal interneurones in the cat. Eur J Pharmacol. 1982;77:203–4.

    Article  CAS  PubMed  Google Scholar 

  80. Moghaddam B, Adams B, Verma A, Daly D. Activation of glutamatergic neurotransmission by ketamine: a novel step in the pathway from NMDA receptor blockade to dopaminergic and cognitive disruptions associated with the prefrontal cortex. J Neurosci. 1997;17:2921–7.

    CAS  PubMed  Google Scholar 

  81. Olney JW, Sharpe LG. Brain lesions in an infant rhesus monkey treated with monsodium glutamate. Science. 1969;166:386–8.

    Article  CAS  PubMed  Google Scholar 

  82. Adams B, Moghaddam B. Corticolimbic dopamine neurotransmission is temporally dissociated from the cognitive and locomotor effects of phencyclidine. J Neurosci. 1998;18:5545–54.

    CAS  PubMed  Google Scholar 

  83. Ikonomidou C, Bosch F, Miksa M, Bittigau P, Vöckler J, Dikranian K, et al. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science. 1999;283:70–4.

    Article  CAS  PubMed  Google Scholar 

  84. Olney JW, Labruyere J, Wang G, Wozniak DF, Price MT, Sesma MA. NMDA antagonist neurotoxicity: mechanism and prevention. Science. 1991;254:1515–8.

    Article  CAS  PubMed  Google Scholar 

  85. Weinberger DR. On the plausibility of “the neurodevelopmental hypothesis” of schizophrenia. Neuro-psychopharmacology. 1996;14:1S–1.

    Article  CAS  Google Scholar 

  86. Javitt DC, Zukin SR. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry. 1991;148:1301–8.

    Article  CAS  PubMed  Google Scholar 

  87. Kalinichev M, Robbins MJ, Hartfield EM, Maycox PR, Moore SH, Savage KM, et al. Comparison between intraperitoneal and subcutaneous phencyclidine administration in Sprague–Dawley rats: a locomotor activity and gene induction study. Prog Neuropsychopharmacol Biol Psychiatry. 2008;32:414–22.

    Article  CAS  PubMed  Google Scholar 

  88. Sams-Dodd F. Distinct effects of d-amphetamine and phencyclidine on the social behaviour of rats. Behav Pharmacol. 1995;6:55–65.

    CAS  PubMed  Google Scholar 

  89. Egerton A, Reid L, McKerchar CE, Morris BJ, Pratt JA. Impairment in perceptual attentional set-shifting following PCP administration: a rodent model of set-shifting deficits in schizophrenia. Psycho-pharmacology (Berl). 2005;179:77–84.

    Article  CAS  Google Scholar 

  90. Mansbach RS, Geyer MA. Effects of phencyclidine and phencyclidine biologs on sensorimotor gating in the rat. Neuropsychopharmacology. 1989;2:299–308.

    Article  CAS  PubMed  Google Scholar 

  91. Mouri A, Noda Y, Enomoto T, Nabeshima T. Phencyclidine animal models of schizophrenia: approaches from abnormality of glutamatergic neurotransmission and neurodevelopment. Neurochem Int. 2007;51:173–84.

    Article  CAS  PubMed  Google Scholar 

  92. Rainey JM, Crowder MK. Prolonged psychosis attributed to phencyclidine: report of three cases. Am J Psychiatry. 1975;132:1076–8.

    Article  PubMed  Google Scholar 

  93. Allen RM, Young SJ. Phencyclidine-induced psychosis. Am J Psychiatry. 1978;135:1081–4.

    Article  CAS  PubMed  Google Scholar 

  94. Gotoh L, Kawanami N, Nakahara T, Hondo H, Motomura K, Ohta E, et al. Effects of the adenosine A(1) receptor agonist N(6)-cyclopentyladenosine on phencyclidine-induced behavior and expression of the immediate-early genes in the discrete brain regions of rats. Brain Res Mol Brain Res. 2002;100:1–12.

    Article  CAS  PubMed  Google Scholar 

  95. Rimondini R, Ferre S, Ogren SO, Fuxe K. Adenosine A2A agonists: a potential new type of atypical antipsychotic. Neuropsychopharmacology. 1997;17:82–91.

    Article  CAS  PubMed  Google Scholar 

  96. Malec D, Poleszak E. Involvement of adenosine receptors in dizocilpine-induced motor activity in mice. Pharmacol Rep. 2006;58:101–6.

    CAS  PubMed  Google Scholar 

  97. Shen H-Y, Coelho JE, Ohtsuka N, Canas PM, Day Y-J, Huang Q-Y, et al. A critical role of the adenosine A2A receptor in extrastriatal neurons in modulating psychomotor activity as revealed by opposite phenotypes of striatum and forebrain A2A receptor knock-outs. J Neurosci. 2008;28:2970–5.

    Article  CAS  PubMed  Google Scholar 

  98. Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III–the final common pathway. Schizophr Bull. 2009;35:549–62.

    Article  PubMed Central  PubMed  Google Scholar 

  99. Edeleanu L. Uber einige Derivate der Phenylmethacrylsaure und der Phenylisobuttersaure. Ber Deutsch Chem Ges. 1887;20:616.

    Article  Google Scholar 

  100. Heal DJ, Smith SL, Gosden J, Nutt DJ. Amphetamine, past and present–a pharmacological and clinical perspective. J Psychopharmacol. 2013;27:479–96.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  101. Deller T, Sarter M. Effects of repeated administration of amphetamine on behavioral vigilance: evidence for “sensitized” attentional impairments. Psychopharmacology (Berl). 1998;137:410–4.

    Article  CAS  Google Scholar 

  102. Kondrad RL, Burk JA. Transient disruption of attentional performance following escalating amphetamine administration in rats. Psychopharmacology (Berl). 2004;175:436–42.

    CAS  Google Scholar 

  103. Castner SA, Vosler PS, Goldman-Rakic PS. Amphetamine sensitization impairs cognition and reduces dopamine turnover in primate prefrontal cortex. Biol Psychiatry. 2005;57:743–51.

    Article  CAS  PubMed  Google Scholar 

  104. Kolb B, Gorny G, Li Y, Samaha A-N, Robinson TE. Amphetamine or cocaine limits the ability of later experience to promote structural plasticity in the neocortex and nucleus accumbens. Proc Natl Acad Sci USA. 2003;100:10523–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Selemon LD, Begović A, Goldman-Rakic PS, Castner SA. Amphetamine sensitization alters dendritic morphology in prefrontal cortical pyramidal neurons in the non-human primate. Neuro-psychopharmacology. 2007;32:919–31.

    Article  CAS  Google Scholar 

  106. Wolf ME, Mangiavacchi S, Sun X. Mechanisms by which dopamine receptors may influence synaptic plasticity. Ann NY Acad Sci. 2003;1003:241–9.

    Article  CAS  PubMed  Google Scholar 

  107. Durieux PF, Schiffmann SN, de Kerchove d’Exaerde A. Differential regulation of motor control and response to dopaminergic drugs by D1R and D2R neurons in distinct dorsal striatum subregions. EMBO J. 2012;31:640–53.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  108. Seeman P. Dopamine D2 receptors as treatment targets in schizophrenia. Clin Schizophr Relat Psychoses. 2010;4:56–73.

    Article  PubMed  Google Scholar 

  109. Ferre S, Fredholm BB, Morelli M, Popoli P, Fuxe K. Adenosine-dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci. 1997;20:482–7.

    Article  CAS  PubMed  Google Scholar 

  110. Ferre S, Ciruela F, Canals M, Marcellino D, Burgueno J, Casado V, et al. Adenosine A2A-dopamine D2 receptor-receptor heteromers. Targets for neuro-psychiatric disorders. Parkinsonism Relat Disord. 2004;10:265–71.

    Article  PubMed  Google Scholar 

  111. Shen H-Y, Singer P, Lytle N, Wei CJ, Lan J-Q, Williams-Karnesky RL, et al. Adenosine augmentation ameliorates psychotic and cognitive endophenotypes of schizophrenia. J Clin Invest. 2012;122:2567–77.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Kurumaji A, Toru M. An increase in [3H] CGS21680 binding in the striatum of postmortem brains of chronic schizophrenics. Brain Res. 1998;808:320–3.

    Article  CAS  PubMed  Google Scholar 

  113. Hong C-J, Liu H-C, Liu T-Y, Liao D-L, Tsai S-J. Association studies of the adenosine A2a receptor (1976 T > C) genetic polymorphism in Parkinson’s disease and schizophrenia. J Neural Transm. 2005;112:1503–10.

    Article  CAS  PubMed  Google Scholar 

  114. Gotoh L, Mitsuyasu H, Kobayashi Y, Oribe N, Takata A, Ninomiya H, et al. Association analysis of adenosine A1 receptor gene (ADORA1) polymorphisms with schizophrenia in a Japanese population. Psychiatr Genet. 2009;19:328–35.

    Article  PubMed  Google Scholar 

  115. Dutra GP, Ottoni GL, Lara DR, Bogo MR. Lower frequency of the low activity adenosine deaminase allelic variant (ADA1*2) in schizophrenic patients. Rev Bras Psiquiatr. 2010;32:275–8.

    Article  PubMed  Google Scholar 

  116. Akhondzadeh S, Safarcherati A, Amini H. Beneficial antipsychotic effects of allopurinol as add-on therapy for schizophrenia: a double blind, randomized and placebo controlled trial. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29:253–9.

    Article  CAS  PubMed  Google Scholar 

  117. Brunstein MG, Ghisolfi ES, Ramos FLP, Lara DR. A clinical trial of adjuvant allopurinol therapy for moderately refractory schizophrenia. J Clin Psychiatry. 2005;66:213–9.

    Article  CAS  PubMed  Google Scholar 

  118. Dickerson FB, Stallings CR, Origoni AE, Sullens A, Khushalani S, Sandson N, et al. A double-blind trial of adjunctive allopurinol for schizophrenia. Schizophr Res. 2009;109:66–9.

    Article  PubMed  Google Scholar 

  119. Linden N, Onwuanibe A, Sandson N. Rapid resolution of psychotic symptoms in a patient with schizophrenia using allopurinol as an adjuvant: a case report. Clin Schizophr Relat Psychoses. 2014;7:231–4.

    Article  PubMed  Google Scholar 

  120. Buie LW, Oertel MD, Cala SO. Allopurinol as adjuvant therapy in poorly responsive or treatment refractory schizophrenia. Ann Pharmacother. 2006;40:2200–4.

    Article  CAS  PubMed  Google Scholar 

  121. Akhondzadeh S, Shasavand E, Jamilian H, Shabestari O, Kamalipour A. Dipyridamole in the treatment of schizophrenia: adenosine-dopamine receptor interactions. J Clin Pharm Ther. 2000;25:131–7.

    Article  CAS  PubMed  Google Scholar 

  122. Machado-Vieira R, Soares JC, Lara DR, Luckenbaugh DA, Busnello JV, Marca G, et al. A double-blind, randomized, placebo-controlled 4-week study on the efficacy and safety of the purinergic agents allopurinol and dipyridamole adjunctive to lithium in acute bipolar mania. J Clin Psychiatry. 2008;69:1237–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  123. Weiser M, Gershon AA, Rubinstein K, Petcu C, Ladea M, Sima D, et al. A randomized controlled trial of allopurinol vs. placebo added on to antipsychotics in patients with schizophrenia or schizoaffective disorder. Schizophr Res. 2012;138:35–8.

    Article  PubMed  Google Scholar 

  124. Hirota T, Kishi T. Adenosine hypothesis in schizophrenia and bipolar disorder: a systematic review and meta-analysis of randomized controlled trial of adjuvant purinergic modulators. Schizophr Res. 2013;149:88–95.

    Article  PubMed  Google Scholar 

  125. Svenningsson P, Le Moine C, Fisone G, Fredholm BB. Distribution, biochemistry and function of striatal adenosine A2A receptors. Prog Neurobiol. 1999;59:355–96.

    Article  CAS  PubMed  Google Scholar 

  126. Fredholm BB, Chen JF, Cunha RA, Svenningsson P, Vaugeois JM. Adenosine and brain function. Int Rev Neurobiol. 2005;63:191–270.

    Article  CAS  PubMed  Google Scholar 

  127. Gomes CV, Kaster MP, Tomé AR, Agostinho PM, Cunha RA. Adenosine receptors and brain diseases: neuroprotection and neurodegeneration. Biochim Biophys Acta. 1808;2011:1380–99.

    Google Scholar 

  128. Kaiser S, Quinn R. Adenosine receptors as potential therapeutic targets. Drug Discov Today. 1999;4:542–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Ministerio de Economía y Competitividad/Instituto de Salud Carlos III (SAF2014-55700-P, PCIN-2013-019-C03-03 and PIE14/00034), Institució Catalana de Recerca i Estudis Avançats (ICREA Academia-2010) and Agentschap voor Innovatie door Wetenschap en Technologie (SBO-140028) to FC. The authors belong to the “Neuropharmacology and Pain” accredited research group (Generalitat de Catalunya, 2009 SGR 232).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Ciruela .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ciruela, F. et al. (2015). Adenosine in the Neurobiology of Schizophrenia: Potential Adenosine Receptor-Based Pharmacotherapy. In: Gargiulo, P., Arroyo, H. (eds) Psychiatry and Neuroscience Update. Springer, Cham. https://doi.org/10.1007/978-3-319-17103-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17103-6_26

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17102-9

  • Online ISBN: 978-3-319-17103-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics