Skip to main content

Methods to Enhance Bone Formation in Distraction Osteogenesis

  • Chapter
Pediatric Lower Limb Deformities

Abstract

Though distraction osteogenesis is one of the most anabolic processes known, it too has its limitations leading to the failure of the regenerate. Many mechanical, biological, and pharmacological methods have been developed to improve the quantity and quality of the new bone formation. In this chapter we describe various methods to monitor the regenerate, including the easy-to-use and objective pixel value ratio method. Physical stimulation techniques, including mechanical, ultrasound, and electromagnetic stimulation, have been in practice for quite some time. We have given special emphasis to the biological methods, including platelet-rich plasma, bone morphogenetic protein, stem cells, and growth factors, which are the current fields of research. A wide range of pharmacological agents from bisphosphonates to experimental drugs are being researched. But until now there has been no ideal foolproof option, and most of these methods are still in an experimental stage. The best treatment option is to identify the basic problem in every patient—poor anabolism or excessive catabolism—and treat accordingly with the available arsenal of mechanical, biological, and pharmacological methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jimi E, Hirata S, Osawa K, Terashita M, Kitamura C, Fukushima H. The current and future therapies of bone regeneration to repair bone defects. Int J Dent. 2012;2012:148261.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Iobst C. Limb lengthening combined with deformity correction in children with the Taylor Spatial Frame. J Pediatr Orthop B. 2010;19(6):529–34.

    Article  PubMed  Google Scholar 

  3. Kim SJ, Balce GC, Agashe MV, Song SH, Song HR. Is bilateral lower limb lengthening appropriate for achondroplasia?: midterm analysis of the complications and quality of life. Clin Orthop Relat Res. 2012;470(2):616–21.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Merloz P. Bone regeneration and limb lengthening. Osteoporos Int. 2011;22(6):2033–6.

    Article  CAS  PubMed  Google Scholar 

  5. Yang JH, Kim HJ, Kim SE, Yun YP, Bae JH, Kim SJ, et al. The effect of bone morphogenic protein-2-coated tri-calcium phosphate/hydroxyapatite on new bone formation in a rat model of femoral distraction osteogenesis. Cytotherapy. 2012;14(3):315–26.

    Article  CAS  PubMed  Google Scholar 

  6. Li G, Bouxsein ML, Luppen C, Li XJ, Wood M, Seeherman HJ, et al. Bone consolidation is enhanced by rhBMP-2 in a rabbit model of distraction osteogenesis. J Orthop Res. 2002;20(4):779–88.

    Article  CAS  PubMed  Google Scholar 

  7. Andreassen TT, Jorgensen PH, Flyvbjerg A, Orskov H, Oxlund H. Growth hormone stimulates bone formation and strength of cortical bone in aged rats. J Bone Miner Res. 1995;10(7):1057–67.

    Article  CAS  PubMed  Google Scholar 

  8. Claes L, Willie B. The enhancement of bone regeneration by ultrasound. Prog Biophys Mol Biol. 2007;93(1–3):384–98.

    Article  PubMed  Google Scholar 

  9. Pomini KT, Andreo JC, Rodrigues Ade C, de O Gonçalves JB, Dare LR, German IJ, et al. Effect of low-intensity pulsed ultrasound on bone regeneration: biochemical and radiologic analyses. J Ultrasound Med. 2014;33(4):713–7.

    Article  PubMed  Google Scholar 

  10. Jiang X, Yang J, Chai Z, Song J, Deng F, Wang Z. [Low intensity pulsed ultrasound irradiating combined with guided bone regeneration for promoting the repair effect of periodontal bone defect]. Hua Xi Kou Qiang Yi Xue Za Zhi. 2012;30(5):487–92.

    CAS  PubMed  Google Scholar 

  11. Luna Gonzalez F, Lopez Arevalo R, Meschian Coretti S, Urbano Labajos V, Delgado RB. Pulsed electromagnetic stimulation of regenerate bone in lengthening procedures. Acta Orthop Belg. 2005;71(5):571–6.

    PubMed  Google Scholar 

  12. Windhagen H, Kolbeck S, Bail H, Schmeling A, Raschke M. Quantitative assessment of in vivo bone regeneration consolidation in distraction osteogenesis. J Orthop Res. 2000;18(6):912–9.

    Article  CAS  PubMed  Google Scholar 

  13. Romanowski CA, Underwood AC, Sprigg A. Reduction of radiation doses in leg lengthening procedures by means of audit and computed tomography scanogram techniques. Br J Radiol. 1994;67(803):1103–7.

    Article  CAS  PubMed  Google Scholar 

  14. Eyres KS, Bell MJ, Kanis JA. Methods of assessing new bone formation during limb lengthening. Ultrasonography, dual energy X-ray absorptiometry and radiography compared. J Bone Joint Surg Br. 1993;75(3):358–64.

    CAS  PubMed  Google Scholar 

  15. Eyres KS, Bell MJ, Kanis JA. New bone formation during leg lengthening. Evaluated by dual energy X-ray absorptiometry. J Bone Joint Surg Br. 1993;75(1):96–106.

    CAS  PubMed  Google Scholar 

  16. Song SH, Sinha S, Kim TY, Park YE, Kim SJ, Song HR. Analysis of corticalization using the pixel value ratio for fixator removal in tibial lengthening. J Orthop Sci. 2011;16(2):177–83.

    Article  PubMed  Google Scholar 

  17. Hazra S, Song HR, Biswal S, Lee SH, Lee SH, Jang KM, et al. Quantitative assessment of mineralization in distraction osteogenesis. Skeletal Radiol. 2008;37(9):843–7.

    Article  PubMed  Google Scholar 

  18. Shim JS, Chung KH, Ahn JM. Value of measuring bone density serial changes on a picture archiving and communication systems (PACS) monitor in distraction osteogenesis. Orthopedics. 2002;25(11):1269–72.

    PubMed  Google Scholar 

  19. Song SH, Agashe M, Kim TY, Sinha S, Park YE, Kim SJ, et al. Serial bone mineral density ratio measurement for fixator removal in tibia distraction osteogenesis and need of a supportive method using the pixel value ratio. J Pediatr Orthop B. 2012;21(2):137–45.

    Article  PubMed  Google Scholar 

  20. Hamanishi C, Yasuwaki Y, Kikuchi H, Tanaka S, Tamura K. Classification of the callus in limb lengthening. Radiographic study of 35 limbs. Acta Orthop Scand. 1992;63(4):430–3.

    Article  CAS  PubMed  Google Scholar 

  21. Donnan LT, Saleh M, Rigby AS, McAndrew A. Radiographic assessment of bone formation in tibia during distraction osteogenesis. J Pediatr Orthop. 2002;22(5):645–51.

    PubMed  Google Scholar 

  22. Minty I, Maffulli N, Hughes TH, Shaw DG, Fixsen JA. Radiographic features of limb lengthening in children. Acta Radiol. 1994;35(6):555–9.

    Article  CAS  PubMed  Google Scholar 

  23. Devmurari KN, Song HR, Modi HN, Venkatesh KP, Ju KS, Song SH. Callus features of regenerate fracture cases in femoral lengthening in achondroplasia. Skeletal Radiol. 2010;39(9):897–903.

    Article  PubMed  Google Scholar 

  24. Li R, Saleh M, Yang L, Coulton L. Radiographic classification of osteogenesis during bone distraction. J Orthop Res. 2006;24(3):339–47.

    Article  PubMed  Google Scholar 

  25. Noonan KJ, Price CT, Sproul JT, Bright RW. Acute correction and distraction osteogenesis for the malaligned and shortened lower extremity. J Pediatr Orthop. 1998;18(2):178–86.

    CAS  PubMed  Google Scholar 

  26. Shyam AK, Singh SU, Modi HN, Song HR, Lee SH, An H. Leg lengthening by distraction osteogenesis using the Ilizarov apparatus: a novel concept of tibia callus subsidence and its influencing factors. Int Orthop. 2009;33(6):1753–9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Brighton CT, Hunt RM. Early histological and ultrastructural changes in medullary fracture callus. J Bone Joint Surg Am. 1991;73(6):832–47.

    CAS  PubMed  Google Scholar 

  28. Choi IH, Ahn JH, Chung CY, Cho TJ. Vascular proliferation and blood supply during distraction osteogenesis: a scanning electron microscopic observation. J Orthop Res. 2000;18(5):698–705.

    Article  CAS  PubMed  Google Scholar 

  29. Moore DC, Leblanc CW, Muller R, Crisco 3rd JJ, Ehrlich MG. Physiologic weight-bearing increases new vessel formation during distraction osteogenesis: a micro-tomographic imaging study. J Orthop Res. 2003;21(3):489–96.

    Article  PubMed  Google Scholar 

  30. Pacicca DM, Moore DC, Ehrlich MG. Physiologic weight-bearing and consolidation of new bone in a rat model of distraction osteogenesis. J Pediatr Orthop. 2002;22(5):652–9.

    PubMed  Google Scholar 

  31. Fink B, Krieger M, Schneider T, Menkhaus S, Fischer J, Ruther W. Factors affecting bone regeneration in Ilizarov callus distraction. Unfallchirurg. 1995;98(12):633–9.

    CAS  PubMed  Google Scholar 

  32. Kassis B, Glorion C, Tabib W, Blanchard O, Pouliquen JC. Callus response to micromovement after elongation in the rabbit. J Pediatr Orthop. 1996;16(4):480–3.

    Article  CAS  PubMed  Google Scholar 

  33. Greenwald JA, Luchs JS, Mehrara BJ, Spector JA, Mackool RJ, McCarthy JG, et al. “Pumping the regenerate”: an evaluation of oscillating distraction osteogenesis in the rodent mandible. Ann Plast Surg. 2000;44(5):516–21.

    Article  CAS  PubMed  Google Scholar 

  34. Mofid MM, Inoue N, Atabey A, Marti G, Chao EY, Manson PN, et al. Callus stimulation in distraction osteogenesis. Plast Reconstr Surg. 2002;109(5):1621–9.

    Article  PubMed  Google Scholar 

  35. Kassis B, Glorion C, Tabib W, Blanchard O, Pouliquen JC. Callus response to micromovement during elongation in the rabbit. J Pediatr Orthop. 1998;18(5):586–8.

    Article  CAS  PubMed  Google Scholar 

  36. Ilizarov GA. The tension-stress effect on the genesis and growth of tissues: part II. The influence of the rate and frequency of distraction. Clin Orthop Relat Res. 1989;239:263–85.

    PubMed  Google Scholar 

  37. Ilizarov GA, Green SA. The transosseous osteosynthesis: theoretical and clinical aspects of the regeneration and growth of tissue. Berlin, New York: Springer-Verlag; 1992. p. viii. 800.

    Book  Google Scholar 

  38. Mizuta H, Nakamura E, Kudo S, Maeda T, Takagi K. Greater frequency of distraction accelerates bone formation in open-wedge proximal tibial osteotomy with hemicallotasis. Acta Orthop Scand. 2004;75(5):588–93.

    Article  PubMed  Google Scholar 

  39. Bright AS, Herzenberg JE, Paley D, Weiner I, Burghardt RD. Preliminary experience with motorized distraction for tibial lengthening. Strategies Trauma Limb Reconstr. 2014;9(2):97–100.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Welch RD, Birch JG, Makarov MR, Samchukov ML. Histomorphometry of distraction osteogenesis in a caprine tibial lengthening model. J Bone Miner Res. 1998;13(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  41. Makarov MR, Kochutina LN, Samchukov ML, Birch JG, Welch RD. Effect of rhythm and level of distraction on muscle structure: an animal study. Clin Orthop Relat Res. 2001;384:250–64.

    Article  PubMed  Google Scholar 

  42. Griffin XL, Costello I, Costa ML. The role of low intensity pulsed ultrasound therapy in the management of acute fractures: a systematic review. J Trauma. 2008;65(6):1446–52.

    Article  PubMed  Google Scholar 

  43. Azuma Y, Ito M, Harada Y, Takagi H, Ohta T, Jingushi S. Low-intensity pulsed ultrasound accelerates rat femoral fracture healing by acting on the various cellular reactions in the fracture callus. J Bone Miner Res. 2001;16(4):671–80.

    Article  CAS  PubMed  Google Scholar 

  44. Shimazaki A, Inui K, Azuma Y, Nishimura N, Yamano Y. Low-intensity pulsed ultrasound accelerates bone maturation in distraction osteogenesis in rabbits. J Bone Joint Surg Br. 2000;82(7):1077–82.

    Article  CAS  PubMed  Google Scholar 

  45. Tis JE, Meffert CR, Inoue N, McCarthy EF, Machen MS, McHale KA, et al. The effect of low intensity pulsed ultrasound applied to rabbit tibiae during the consolidation phase of distraction osteogenesis. J Orthop Res. 2002;20(4):793–800.

    Article  PubMed  Google Scholar 

  46. Hannemann PF, Mommers EH, Schots JP, Brink PR, Poeze M. The effects of low-intensity pulsed ultrasound and pulsed electromagnetic fields bone growth stimulation in acute fractures: a systematic review and meta-analysis of randomized controlled trials. Arch Orthop Trauma Surg. 2014;134(8):1093–106.

    Article  CAS  PubMed  Google Scholar 

  47. Heckman JD, Ryaby JP, McCabe J, Frey JJ, Kilcoyne RF. Acceleration of tibial fracture-healing by non-invasive, low-intensity pulsed ultrasound. J Bone Joint Surg Am. 1994;76(1):26–34.

    CAS  PubMed  Google Scholar 

  48. Kristiansen TK, Ryaby JP, McCabe J, Frey JJ, Roe LR. Accelerated healing of distal radial fractures with the use of specific, low-intensity ultrasound. A multicenter, prospective, randomized, double-blind, placebo-controlled study. J Bone Joint Surg Am. 1997;79(7):961–73.

    CAS  PubMed  Google Scholar 

  49. Emami A, Petren-Mallmin M, Larsson S. No effect of low-intensity ultrasound on healing time of intramedullary fixed tibial fractures. J Orthop Trauma. 1999;13(4):252–7.

    Article  CAS  PubMed  Google Scholar 

  50. Handolin L, Kiljunen V, Arnala I, Kiuru MJ, Pajarinen J, Partio EK, et al. No long-term effects of ultrasound therapy on bioabsorbable screw-fixed lateral malleolar fracture. Scand J Surg. 2005;94(3):239–42.

    CAS  PubMed  Google Scholar 

  51. Handolin L, Kiljunen V, Arnala I, Kiuru MJ, Pajarinen J, Partio EK, et al. Effect of ultrasound therapy on bone healing of lateral malleolar fractures of the ankle joint fixed with bioabsorbable screws. J Orthop Sci. 2005;10(4):391–5.

    Article  PubMed  Google Scholar 

  52. Sakurakichi K, Tsuchiya H, Uehara K, Yamashiro T, Tomita K, Azuma Y. Effects of timing of low-intensity pulsed ultrasound on distraction osteogenesis. J Orthop Res. 2004;22(2):395–403.

    Article  PubMed  Google Scholar 

  53. Taylor KF, Rafiee B, Tis JE, Inoue N. Low-intensity pulsed ultrasound does not enhance distraction callus in a rabbit model. Clin Orthop Relat Res. 2007;459:237–45.

    Article  PubMed  Google Scholar 

  54. Adie S, Harris IA, Naylor JM, Rae H, Dao A, Yong S, et al. Pulsed electromagnetic field stimulation for acute tibial shaft fractures: a multicenter, double-blind, randomized trial. J Bone Joint Surg Am. 2011;93(17):1569–76.

    Article  PubMed  Google Scholar 

  55. Bassett CA, Mitchell SN, Gaston SR. Treatment of ununited tibial diaphyseal fractures with pulsing electromagnetic fields. J Bone Joint Surg Am. 1981;63(4):511–23.

    CAS  PubMed  Google Scholar 

  56. Hannemann PF, Gottgens KW, van Wely BJ, Kolkman KA, Werre AJ, Poeze M, et al. The clinical and radiological outcome of pulsed electromagnetic field treatment for acute scaphoid fractures: a randomised double-blind placebo-controlled multicentre trial. J Bone Joint Surg Br. 2012;94(10):1403–8.

    Article  CAS  PubMed  Google Scholar 

  57. Fredericks DC, Piehl DJ, Baker JT, Abbott J, Nepola JV. Effects of pulsed electromagnetic field stimulation on distraction osteogenesis in the rabbit tibial leg lengthening model. J Pediatr Orthop. 2003;23(4):478–83.

    PubMed  Google Scholar 

  58. Taylor KF, Inoue N, Rafiee B, Tis JE, McHale KA, Chao EY. Effect of pulsed electromagnetic fields on maturation of regenerate bone in a rabbit limb lengthening model. J Orthop Res. 2006;24(1):2–10.

    Article  PubMed  Google Scholar 

  59. Lane JM. Bone morphogenic protein science and studies. J Orthop Trauma. 2005;19(10 Suppl):S17–22.

    Article  PubMed  Google Scholar 

  60. Schmidmaier G, Schwabe P, Wildemann B, Haas NP. Use of bone morphogenetic proteins for treatment of non-unions and future perspectives. Injury. 2007;38 Suppl 4:S35–41.

    Google Scholar 

  61. Schmidmaier G, Wildemann B, Cromme F, Kandziora F, Haas NP, Raschke M. Bone morphogenetic protein-2 coating of titanium implants increases biomechanical strength and accelerates bone remodeling in fracture treatment: a biomechanical and histological study in rats. Bone. 2002;30(6):816–22.

    Article  CAS  PubMed  Google Scholar 

  62. Hamdy RC, Amako M, Beckman L, Kawaguchi M, Rauch F, Lauzier D, et al. Effects of osteogenic protein-1 on distraction osteogenesis in rabbits. Bone. 2003;33(2):248–55.

    Article  CAS  PubMed  Google Scholar 

  63. Janicki P, Schmidmaier G. What should be the characteristics of the ideal bone graft substitute? Combining scaffolds with growth factors and/or stem cells. Injury. 2011;42 Suppl 2:S77–81.

    Google Scholar 

  64. Mandu-Hrit M, Haque T, Lauzier D, Kotsiopriftis M, Rauch F, Tabrizian M, et al. Early injection of OP-1 during distraction osteogenesis accelerates new bone formation in rabbits. Growth Factors. 2006;24(3):172–83.

    Article  CAS  PubMed  Google Scholar 

  65. Mizumoto Y, Moseley T, Drews M, Cooper VN, 3rd, Reddi AH. Acceleration of regenerate ossification during distraction osteogenesis with recombinant human bone morphogenetic protein-7. J Bone Joint Surg Am. 2003;85-A Suppl 3:124–30.

    Google Scholar 

  66. Friedlaender GE, Perry CR, Cole JD, Cook SD, Cierny G, Muschler GF, et al. Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J Bone Joint Surg Am. 2001;83-A Suppl 1(Pt 2):S151–8.

    Google Scholar 

  67. Govender S, Csimma C, Genant HK, Valentin-Opran A, Amit Y, Arbel R, et al. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J Bone Joint Surg Am. 2002;84-A(12):2123–34.

    PubMed  Google Scholar 

  68. Bokobza SM, Ye L, Jiang WG. When BMP signalling goes wrong: the intracellular and molecular mechanisms of BMP signalling in cancer. Curr Signal Transduct Ther. 2009;4(3):174–95.

    Article  CAS  Google Scholar 

  69. Carragee EJ, Chu G, Rohatgi R, Hurwitz EL, Weiner BK, Yoon ST, et al. Cancer risk after use of recombinant bone morphogenetic protein-2 for spinal arthrodesis. J Bone Joint Surg Am. 2013;95(17):1537–45.

    Article  PubMed  Google Scholar 

  70. Cooper GS, Kou TD. Risk of cancer after lumbar fusion surgery with recombinant human bone morphogenic protein-2 (rh-BMP-2). Spine. 2013;38(21):1862–8.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kokorina NA, Lewis JS, Jr, Zakharkin SO, Krebsbach PH, Nussenbaum B. rhBMP-2 has adverse effects on human oral carcinoma cell lines in vivo. Laryngoscope. 2012;122(1):95–102.

    Google Scholar 

  72. Poynton AR, Lane JM. Safety profile for the clinical use of bone morphogenetic proteins in the spine. Spine. 2002;27(16 Suppl 1):S40–8.

    Article  PubMed  Google Scholar 

  73. Rothhammer T, Poser I, Soncin F, Bataille F, Moser M, Bosserhoff AK. Bone morphogenic proteins are overexpressed in malignant melanoma and promote cell invasion and migration. Cancer Res. 2005;65(2):448–56.

    CAS  PubMed  Google Scholar 

  74. Bierie B, Moses HL. Tumour microenvironment: TGFbeta: the molecular Jekyll and Hyde of cancer. Nat Rev Cancer. 2006;6(7):506–20.

    Article  CAS  PubMed  Google Scholar 

  75. Fu R, Selph S, McDonagh M, Peterson K, Tiwari A, Chou R, et al. Effectiveness and harms of recombinant human bone morphogenetic protein-2 in spine fusion: a systematic review and meta-analysis. Ann Intern Med. 2013;158(12):890–902.

    Article  PubMed  Google Scholar 

  76. Shweikeh F, Hanna G, Bloom L, Sayegh ET, Liu J, Acosta FL, et al. Assessment of outcome following the use of recombinant human bone morphogenetic protein-2 for spinal fusion in the elderly population. J Neurosurg Sci. 2014 Jul 16. [Epub ahead of print].

    Google Scholar 

  77. Jager M, Jelinek EM, Wess KM, Scharfstadt A, Jacobson M, Kevy SV, et al. Bone marrow concentrate: a novel strategy for bone defect treatment. Curr Stem Cell Res Ther. 2009;4(1):34–43.

    Article  PubMed  Google Scholar 

  78. Kitoh H, Kitakoji T, Tsuchiya H, Katoh M, Ishiguro N. Distraction osteogenesis of the lower extremity in patients with achondroplasia/hypochondroplasia treated with transplantation of culture-expanded bone marrow cells and platelet-rich plasma. J Pediatr Orthop. 2007;27(6):629–34.

    Article  PubMed  Google Scholar 

  79. Takamine Y, Tsuchiya H, Kitakoji T, Kurita K, Ono Y, Ohshima Y, et al. Distraction osteogenesis enhanced by osteoblast-like cells and collagen gel. Clin Orthop Relat Res. 2002;399:240–6.

    Article  PubMed  Google Scholar 

  80. Arora NS, Ramanayake T, Ren YF, Romanos GE. Platelet-rich plasma in sinus augmentation procedures: a systematic literature review: part II. Implant Dent. 2010;19(2):145–57.

    Article  PubMed  Google Scholar 

  81. Dallari D, Fini M, Stagni C, Torricelli P, Nicoli Aldini N, Giavaresi G, et al. In vivo study on the healing of bone defects treated with bone marrow stromal cells, platelet-rich plasma, and freeze-dried bone allografts, alone and in combination. J Orthop Res. 2006;24(5):877–88.

    Article  CAS  PubMed  Google Scholar 

  82. Kawasumi M, Kitoh H, Siwicka KA, Ishiguro N. The effect of the platelet concentration in platelet-rich plasma gel on the regeneration of bone. J Bone Joint Surg Br. 2008;90(7):966–72.

    Article  CAS  PubMed  Google Scholar 

  83. Thor A, Wannfors K, Sennerby L, Rasmusson L. Reconstruction of the severely resorbed maxilla with autogenous bone, platelet-rich plasma, and implants: 1-year results of a controlled prospective 5-year study. Clin Implant Dent Relat Res. 2005;7(4):209–20.

    Article  PubMed  Google Scholar 

  84. Arpornmaeklong P, Kochel M, Depprich R, Kubler NR, Wurzler KK. Influence of platelet-rich plasma (PRP) on osteogenic differentiation of rat bone marrow stromal cells. An in vitro study. Int J Oral Maxillofac Surg. 2004;33(1):60–70.

    Article  CAS  PubMed  Google Scholar 

  85. Latalski M, Elbatrawy YA, Thabet AM, Gregosiewicz A, Raganowicz T, Fatyga M. Enhancing bone healing during distraction osteogenesis with platelet-rich plasma. Injury. 2011;42(8):821–4.

    Article  PubMed  Google Scholar 

  86. Lee DH, Ryu KJ, Kim JW, Kang KC, Choi YR. Bone marrow aspirate concentrate and platelet-rich plasma enhanced bone healing in distraction osteogenesis of the tibia. Clin Orthop Relat Res. 2014;472(12):3789–97.

    Google Scholar 

  87. Sauerbier S, Rickert D, Gutwald R, Nagursky H, Oshima T, Xavier SP, et al. Bone marrow concentrate and bovine bone mineral for sinus floor augmentation: a controlled, randomized, single-blinded clinical and histological trial-per-protocol analysis. Tissue Eng Part A. 2011;17(17–18):2187–97.

    Article  CAS  PubMed  Google Scholar 

  88. Aghaloo TL, Moy PK, Freymiller EG. Investigation of platelet-rich plasma in rabbit cranial defects: a pilot study. J Oral Maxillofac Surg. 2002;60(10):1176–81.

    Article  PubMed  Google Scholar 

  89. Anitua E. Plasma rich in growth factors: preliminary results of use in the preparation of future sites for implants. Int J Oral Maxillofac Implants. 1999;14(4):529–35.

    CAS  PubMed  Google Scholar 

  90. Anitua E, Andia I, Ardanza B, Nurden P, Nurden AT. Autologous platelets as a source of proteins for healing and tissue regeneration. Thromb Haemost. 2004;91(1):4–15.

    CAS  PubMed  Google Scholar 

  91. Fang TD, Salim A, Xia W, Nacamuli RP, Guccione S, Song HM, et al. Angiogenesis is required for successful bone induction during distraction osteogenesis. J Bone Miner Res. 2005;20(7):1114–24.

    Article  CAS  PubMed  Google Scholar 

  92. Gandhi A, Doumas C, O’Connor JP, Parsons JR, Lin SS. The effects of local platelet rich plasma delivery on diabetic fracture healing. Bone. 2006;38(4):540–6.

    Article  CAS  PubMed  Google Scholar 

  93. Gruber R, Karreth F, Fischer MB, Watzek G. Platelet-released supernatants stimulate formation of osteoclast-like cells through a prostaglandin/RANKL-dependent mechanism. Bone. 2002;30(5):726–32.

    Article  CAS  PubMed  Google Scholar 

  94. Hernandez-Fernandez A, Velez R, Soldado F, Saenz-Rios JC, Barber I, Aguirre-Canyadell M. Effect of administration of platelet-rich plasma in early phases of distraction osteogenesis: an experimental study in an ovine femur model. Injury. 2013;44(7):901–7.

    Article  PubMed  Google Scholar 

  95. Kanno T, Takahashi T, Tsujisawa T, Ariyoshi W, Nishihara T. Platelet-rich plasma enhances human osteoblast-like cell proliferation and differentiation. J Oral Maxillofac Surg. 2005;63(3):362–9.

    Article  PubMed  Google Scholar 

  96. Kilian O, Flesch I, Wenisch S, Taborski B, Jork A, Schnettler R, et al. Effects of platelet growth factors on human mesenchymal stem cells and human endothelial cells in vitro. Eur J Med Res. 2004;9(7):337–44.

    CAS  PubMed  Google Scholar 

  97. Marx RE. Platelet-rich plasma (PRP): what is PRP and what is not PRP? Implant Dent. 2001;10(4):225–8.

    Article  CAS  PubMed  Google Scholar 

  98. Shanaman R, Filstein MR, Danesh-Meyer MJ. Localized ridge augmentation using GBR and platelet-rich plasma: case reports. Int J Periodontics Restorative Dent. 2001;21(4):345–55.

    CAS  PubMed  Google Scholar 

  99. Kitoh H, Kitakoji T, Tsuchiya H, Katoh M, Ishiguro N. Transplantation of culture expanded bone marrow cells and platelet rich plasma in distraction osteogenesis of the long bones. Bone. 2007;40(2):522–8.

    Article  PubMed  Google Scholar 

  100. Marcacci M, Kon E, Moukhachev V, Lavroukov A, Kutepov S, Quarto R, et al. Stem cells associated with macroporous bioceramics for long bone repair: 6- to 7-year outcome of a pilot clinical study. Tissue Eng. 2007;13(5):947–55.

    Article  CAS  PubMed  Google Scholar 

  101. Kim SJ, Shin YW, Yang KH, Kim SB, Yoo MJ, Han SK, et al. A multi-center, randomized, clinical study to compare the effect and safety of autologous cultured osteoblast (Ossron) injection to treat fractures. BMC Musculoskelet Disord. 2009;10:20.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Kim SJ, Bahk WJ, Chang CH, Jang JD, Suhl KH. Treatment of osteonecrosis of the femoral head using autologous cultured osteoblasts: a case report. J Med Case Rep. 2008;2:58.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284(5411):143–7.

    Article  CAS  PubMed  Google Scholar 

  104. Peters A, Toben D, Lienau J, Schell H, Bail HJ, Matziolis G, et al. Locally applied osteogenic predifferentiated progenitor cells are more effective than undifferentiated mesenchymal stem cells in the treatment of delayed bone healing. Tissue Eng Part A. 2009;15(10):2947–54.

    Article  CAS  PubMed  Google Scholar 

  105. Marx RE, Carlson ER, Eichstaedt RM, Schimmele SR, Strauss JE, Georgeff KR. Platelet-rich plasma: growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1998;85(6):638–46.

    Article  CAS  PubMed  Google Scholar 

  106. Lucarelli E, Fini M, Beccheroni A, Giavaresi G, Di Bella C, Aldini NN, et al. Stromal stem cells and platelet-rich plasma improve bone allograft integration. Clin Orthop Relat Res. 2005;435:62–8.

    Article  PubMed  Google Scholar 

  107. Bueno EM, Glowacki J. Cell-free and cell-based approaches for bone regeneration. Nat Rev Rheumatol. 2009;5(12):685–97.

    Article  PubMed  Google Scholar 

  108. Cen L, Liu W, Cui L, Zhang W, Cao Y. Collagen tissue engineering: development of novel biomaterials and applications. Pediatr Res. 2008;63(5):492–6.

    Article  CAS  PubMed  Google Scholar 

  109. Fufa D, Shealy B, Jacobson M, Kevy S, Murray MM. Activation of platelet-rich plasma using soluble type I collagen. J Oral Maxillofac Surg. 2008;66(4):684–90.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Vaccaro AR. The role of the osteoconductive scaffold in synthetic bone graft. Orthopedics. 2002;25(5 Suppl):s571–8.

    PubMed  Google Scholar 

  111. Lee J, Sung HM, Jang JD, Park YW, Min SK, Kim EC. Successful reconstruction of 15-cm segmental defects by bone marrow stem cells and resected autogenous bone graft in central hemangioma. J Oral Maxillofac Surg. 2010;68(1):188–94.

    Article  PubMed  Google Scholar 

  112. Antebi B, Pelled G, Gazit D. Stem cell therapy for osteoporosis. Curr Osteoporos Rep. 2014;12(1):41–7.

    Article  PubMed  Google Scholar 

  113. Ohgushi H, Caplan AI. Stem cell technology and bioceramics: from cell to gene engineering. J Biomed Mater Res. 1999;48(6):913–27.

    Article  CAS  PubMed  Google Scholar 

  114. Fife C, Mader JT, Stone J, Brill L, Satterfield K, Norfleet A, et al. Thrombin peptide Chrysalin stimulates healing of diabetic foot ulcers in a placebo-controlled phase I/II study. Wound Repair Regen. 2007;15(1):23–34.

    Article  PubMed  Google Scholar 

  115. Cakarer S, Olgac V, Aksakalli N, Tang A, Keskin C. Acceleration of consolidation period by thrombin peptide 508 in tibial distraction osteogenesis in rats. Br J Oral Maxillofac Surg. 2010;48(8):633–6.

    Article  CAS  PubMed  Google Scholar 

  116. Hanratty BM, Ryaby JT, Pan XH, Li G. Thrombin related peptide TP508 promoted fracture repair in a mouse high energy fracture model. J Orthop Surg Res. 2009;4:1.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Wang H, Li X, Tomin E, Doty SB, Lane JM, Carney DH, et al. Thrombin peptide (TP508) promotes fracture repair by up-regulating inflammatory mediators, early growth factors, and increasing angiogenesis. J Orthop Res. 2005;23(3):671–9.

    Article  CAS  PubMed  Google Scholar 

  118. Yamamoto S. The effect of 2 beta-(3-hydroxypropoxy)-1 alpha, 25-dihydroxyvitamin D3 (ED-71) on callotasis in rabbit. Nihon Seikeigeka Gakkai Zasshi. 1995;69(4):209–21.

    CAS  PubMed  Google Scholar 

  119. Yamane K, Okano T, Kishimoto H, Hagino H. Effect of ED-71 on modeling of bone in distraction osteogenesis. Bone. 1999;24(3):187–93.

    Article  CAS  PubMed  Google Scholar 

  120. Okazaki H, Kurokawa T, Nakamura K, Matsushita T, Mamada K, Kawaguchi H. Stimulation of bone formation by recombinant fibroblast growth factor-2 in callotasis bone lengthening of rabbits. Calcif Tissue Int. 1999;64(6):542–6.

    Article  CAS  PubMed  Google Scholar 

  121. Aronson J. Modulation of distraction osteogenesis in the aged rat by fibroblast growth factor. Clin Orthop Relat Res. 2004;425:264–83.

    Article  PubMed  Google Scholar 

  122. Jiang X, Zou S, Ye B, Zhu S, Liu Y, Hu J. bFGF-modified BMMSCs enhance bone regeneration following distraction osteogenesis in rabbits. Bone. 2010;46(4):1156–61.

    Article  CAS  PubMed  Google Scholar 

  123. Maes C, Coenegrachts L, Stockmans I, Daci E, Luttun A, Petryk A, et al. Placental growth factor mediates mesenchymal cell development, cartilage turnover, and bone remodeling during fracture repair. J Clin Invest. 2006;116(5):1230–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Street J, Bao M, de Guzman L, Bunting S, Peale Jr FV, Ferrara N, et al. Vascular endothelial growth factor stimulates bone repair by promoting angiogenesis and bone turnover. Proc Natl Acad Sci U S A. 2002;99(15):9656–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Weiss S, Zimmermann G, Baumgart R, Kasten P, Bidlingmaier M, Henle P. Systemic regulation of angiogenesis and matrix degradation in bone regeneration—distraction osteogenesis compared to rigid fracture healing. Bone. 2005;37(6):781–90.

    Article  CAS  PubMed  Google Scholar 

  126. Nunotani Y, Abe M, Shirai H, Otsuka H. Efficacy of rhBMP-2 during distraction osteogenesis. J Orthop Sci. 2005;10(5):529–33.

    Article  CAS  PubMed  Google Scholar 

  127. Sailhan F, Gleyzolle B, Parot R, Guerini H, Viguier E. Rh-BMP-2 in distraction osteogenesis: dose effect and premature consolidation. Injury. 2010;41(7):680–6.

    Article  PubMed  Google Scholar 

  128. Haque T, Amako M, Nakada S, Lauzier D, Hamdy RC. An immunohistochemical analysis of the temporal and spatial expression of growth factors FGF 1, 2 and 18, IGF 1 and 2, and TGFbeta1 during distraction osteogenesis. Histol Histopathol. 2007;22(2):119–28.

    CAS  PubMed  Google Scholar 

  129. Jacobsen KA, Al-Aql ZS, Wan C, Fitch JL, Stapleton SN, Mason ZD, et al. Bone formation during distraction osteogenesis is dependent on both VEGFR1 and VEGFR2 signaling. J Bone Miner Res. 2008;23(5):596–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Siwicka KA, Kitoh H, Kawasumi M, Ishiguro N. Spatial and temporal distribution of growth factors receptors in the callus: implications for improvement of distraction osteogenesis. Nagoya J Med Sci. 2011;73(3–4):117–27.

    CAS  PubMed  Google Scholar 

  131. Tavakoli K, Yu Y, Shahidi S, Bonar F, Walsh WR, Poole MD. Expression of growth factors in the mandibular distraction zone: a sheep study. Br J Plast Surg. 1999;52(6):434–9.

    Article  CAS  PubMed  Google Scholar 

  132. Rauch F, Lauzier D, Croteau S, Travers R, Glorieux FH, Hamdy R. Temporal and spatial expression of bone morphogenetic protein-2, -4, and -7 during distraction osteogenesis in rabbits. Bone. 2000;27(3):453–9.

    Article  CAS  PubMed  Google Scholar 

  133. Lesaichot V, Leperlier D, Viateau V, Richarme D, Petite H, Sailhan F. The influence of Bone Morphogenic Protein-2 on the consolidation phase in a distraction osteogenesis model. Injury. 2011;42(12):1460–6.

    Article  PubMed  Google Scholar 

  134. Park HW, Yang KH, Lee KS, Joo SY, Kwak YH, Kim HW. Tibial lengthening over an intramedullary nail with use of the Ilizarov external fixator for idiopathic short stature. J Bone Joint Surg Am. 2008;90(9):1970–8.

    Article  PubMed  Google Scholar 

  135. Dempster DW, Cosman F, Parisien M, Shen V, Lindsay R. Anabolic actions of parathyroid hormone on bone. Endocr Rev. 1993;14(6):690–709.

    CAS  PubMed  Google Scholar 

  136. Reeve J, Hesp R, Williams D, Hulme P, Klenerman L, Zanelli JM, et al. Anabolic effect of low doses of a fragment of human parathyroid hormone on the skeleton in postmenopausal osteoporosis. Lancet. 1976;1(7968):1035–8.

    Article  CAS  PubMed  Google Scholar 

  137. Tam CS, Heersche JN, Murray TM, Parsons JA. Parathyroid hormone stimulates the bone apposition rate independently of its resorptive action: differential effects of intermittent and continuous administration. Endocrinology. 1982;110(2):506–12.

    Article  CAS  PubMed  Google Scholar 

  138. Andreassen TT, Cacciafesta V. Intermittent parathyroid hormone treatment enhances guided bone regeneration in rat calvarial bone defects. J Craniofac Surg. 2004;15(3):424–7. discussion 8–9.

    Article  PubMed  Google Scholar 

  139. Hock JM, Gera I. Effects of continuous and intermittent administration and inhibition of resorption on the anabolic response of bone to parathyroid hormone. J Bone Miner Res. 1992;7(1):65–72.

    Article  CAS  PubMed  Google Scholar 

  140. Podbesek R, Edouard C, Meunier PJ, Parsons JA, Reeve J, Stevenson RW, et al. Effects of two treatment regimes with synthetic human parathyroid hormone fragment on bone formation and the tissue balance of trabecular bone in greyhounds. Endocrinology. 1983;112(3):1000–6.

    Article  CAS  PubMed  Google Scholar 

  141. Chen H, Frankenburg EP, Goldstein SA, McCauley LK. Combination of local and systemic parathyroid hormone enhances bone regeneration. Clin Orthop Relat Res. 2003;416:291–302.

    Article  PubMed  Google Scholar 

  142. Skripitz R, Andreassen TT, Aspenberg P. Strong effect of PTH (1-34) on regenerating bone: a time sequence study in rats. Acta Orthop. 2000;71(6):619–24.

    Article  CAS  Google Scholar 

  143. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster JY, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344(19):1434–41.

    Article  CAS  PubMed  Google Scholar 

  144. Jilka RL, Weinstein RS, Bellido T, Roberson P, Parfitt AM, Manolagas SC. Increased bone formation by prevention of osteoblast apoptosis with parathyroid hormone. J Clin Invest. 1999;104(4):439–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Raschke MJ, Bail H, Windhagen HJ, Kolbeck SF, Weiler A, Raun K, et al. Recombinant growth hormone accelerates bone regenerate consolidation in distraction osteogenesis. Bone. 1999;24(2):81–8.

    Article  CAS  PubMed  Google Scholar 

  146. Ohlsson C, Bengtsson BA, Isaksson OG, Andreassen TT, Slootweg MC. Growth hormone and bone. Endocr Rev. 1998;19(1):55–79.

    CAS  PubMed  Google Scholar 

  147. Cacciafesta V, Dalstra M, Bosch C, Melsen B, Andreassen TT. Growth hormone treatment promotes guided bone regeneration in rat calvarial defects. Eur J Orthod. 2001;23(6):733–40.

    Article  CAS  PubMed  Google Scholar 

  148. Bak B, Andreassen TT. The effect of growth hormone on fracture healing in old rats. Bone. 1991;12(3):151–4.

    Article  CAS  PubMed  Google Scholar 

  149. Bak B, Jorgensen PH, Andreassen TT. The stimulating effect of growth hormone on fracture healing is dependent on onset and duration of administration. Clin Orthop Relat Res. 1991;264:295–301.

    PubMed  Google Scholar 

  150. Sirin Y, Olgac V, Dogru-Abbasoglu S, Tapul L, Aktas S, Soley S. The influence of hyperbaric oxygen treatment on the healing of experimental defects filled with different bone graft substitutes. Int J Med Sci. 2011;8(2):114–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Bennett MH, Stanford RE, Turner R. Hyperbaric oxygen therapy for promoting fracture healing and treating fracture non-union. Cochrane Database Syst Rev. 2012;11:CD004712.

    Google Scholar 

  152. Notelovitz M. Androgen effects on bone and muscle. Fertil Steril. 2002;77 Suppl 4:S34–41.

    Google Scholar 

  153. Maus U, Andereya S, Schmidt H, Zombory G, Gravius S, Ohnsorge JA, et al. Therapy effects of testosterone on the recovery of bone defects. Z Orthop Unfall. 2008;146(1):59–63.

    CAS  PubMed  Google Scholar 

  154. Yun YP, Kim SJ, Lim YM, Park K, Kim HJ, Jeong SI, et al. The effect of alendronate-loaded polycarprolactone nanofibrous scaffolds on osteogenic differentiation of adipose-derived stem cells in bone tissue regeneration. J Biomed Nanotechnol. 2014;10(6):1080–90.

    Article  CAS  PubMed  Google Scholar 

  155. von Knoch F, Eckhardt C, Alabre CI, Schneider E, Rubash HE, Shanbhag AS. Anabolic effects of bisphosphonates on peri-implant bone stock. Biomaterials. 2007;28(24):3549–59.

    Article  CAS  Google Scholar 

  156. Allgrove J. Use of bisphosphonates in children and adolescents. J Pediatr Endocrinol Metab. 2002;15 Suppl 3:921–8.

    Google Scholar 

  157. Licata AA. Bisphosphonate therapy. Am J Med Sci. 1997;313(1):17–22.

    CAS  PubMed  Google Scholar 

  158. Fleisch H. New bisphosphonates in osteoporosis. Osteoporos Int. 1993;3 Suppl 2:S15–22.

    Google Scholar 

  159. Russell RG. Bisphosphonates: from bench to bedside. Ann N Y Acad Sci. 2006;1068:367–401.

    Article  CAS  PubMed  Google Scholar 

  160. Kavanagh KL, Guo K, Dunford JE, Wu X, Knapp S, Ebetino FH, et al. The molecular mechanism of nitrogen-containing bisphosphonates as antiosteoporosis drugs. Proc Natl Acad Sci U S A. 2006;103(20):7829–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Giuliani N, Pedrazzoni M, Negri G, Passeri G, Impicciatore M, Girasole G. Bisphosphonates stimulate formation of osteoblast precursors and mineralized nodules in murine and human bone marrow cultures in vitro and promote early osteoblastogenesis in young and aged mice in vivo. Bone. 1998;22(5):455–61.

    Article  CAS  PubMed  Google Scholar 

  162. Maffulli N, Cheng JC, Sher A, Lam TP. Dual-energy X-ray absorptiometry predicts bone formation in lower limb callotasis lengthening. Ann R Coll Surg Engl. 1997;79(4):250–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Kiely P, Ward K, Bellemore CM, Briody J, Cowell CT, Little DG. Bisphosphonate rescue in distraction osteogenesis: a case series. J Pediatr Orthop. 2007;27(4):467–71.

    Article  PubMed  Google Scholar 

  164. Im GI, Qureshi SA, Kenney J, Rubash HE, Shanbhag AS. Osteoblast proliferation and maturation by bisphosphonates. Biomaterials. 2004;25(18):4105–15.

    Article  CAS  PubMed  Google Scholar 

  165. Plotkin LI, Weinstein RS, Parfitt AM, Roberson PK, Manolagas SC, Bellido T. Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J Clin Invest. 1999;104(10):1363–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Duque G, Rivas D. Alendronate has an anabolic effect on bone through the differentiation of mesenchymal stem cells. J Bone Miner Res. 2007;22(10):1603–11.

    Article  CAS  PubMed  Google Scholar 

  167. Wang CZ, Chen SM, Chen CH, Wang CK, Wang GJ, Chang JK, et al. The effect of the local delivery of alendronate on human adipose-derived stem cell-based bone regeneration. Biomaterials. 2010;31(33):8674–83.

    Article  CAS  PubMed  Google Scholar 

  168. Takahashi M, Yukata K, Matsui Y, Abbaspour A, Takata S, Yasui N. Bisphosphonate modulates morphological and mechanical properties in distraction osteogenesis through inhibition of bone resorption. Bone. 2006;39(3):573–81.

    Article  CAS  PubMed  Google Scholar 

  169. Yoshiga D, Yamashita Y, Nakamichi I, Tanaka T, Yamauchi K, Yamamoto N, et al. Weekly teriparatide injections successfully treated advanced bisphosphonate-related osteonecrosis of the jaws. Osteoporos Int. 2013;24(8):2365–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Curi MM, Cossolin GS, Koga DH, Zardetto C, Christianini S, Feher O, et al. Bisphosphonate-related osteonecrosis of the jaws—an initial case series report of treatment combining partial bone resection and autologous platelet-rich plasma. J Oral Maxillofac Surg. 2011;69(9):2465–72.

    Article  PubMed  Google Scholar 

  171. Srisubut S, Teerakapong A, Vattraphodes T, Taweechaisupapong S. Effect of local delivery of alendronate on bone formation in bioactive glass grafting in rats. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;104(4):e11–6.

    Article  PubMed  Google Scholar 

  172. Omi H, Kusumi T, Kijima H, Toh S. Locally administered low-dose alendronate increases bone mineral density during distraction osteogenesis in a rabbit model. J Bone Joint Surg Br. 2007;89(7):984–8.

    Article  CAS  PubMed  Google Scholar 

  173. Kucuk D, Ay S, Kara MI, Avunduk MC, Gumus C. Comparison of local and systemic alendronate on distraction osteogenesis. Int J Oral Maxillofac Surg. 2011;40(12):1395–400.

    PubMed  Google Scholar 

  174. Ziegler R, Delling G. Effect of calcitonin on the regeneration of a circumscribed bone defect (bored hole in the rat tibia). Acta Endocrinol (Copenh). 1972;69(3):497–506.

    CAS  Google Scholar 

  175. Weiss RE, Singer FR, Gorn AH, Hofer DP, Nimni ME. Calcitonin stimulates bone formation when administered prior to initiation of osteogenesis. J Clin Invest. 1981;68(3):815–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Whitehead M, Lane G, Young O, Campbell S, Abeyasekera G, Hillyard CJ, et al. Interrelations of calcium-regulating hormones during normal pregnancy. Br Med J (Clin Res Ed). 1981;283(6283):10–2.

    Article  CAS  Google Scholar 

  177. Hoff AO, Catala-Lehnen P, Thomas PM, Priemel M, Rueger JM, Nasonkin I, et al. Increased bone mass is an unexpected phenotype associated with deletion of the calcitonin gene. J Clin Invest. 2002;110(12):1849–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Wallach S, Farley JR, Baylink DJ, Brenner-Gati L. Effects of calcitonin on bone quality and osteoblastic function. Calcif Tissue Int. 1993;52(5):335–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hae-Ryong Song MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Song, HR., Lee, D.H., Kim, SJ., Ramanathan, A.K. (2016). Methods to Enhance Bone Formation in Distraction Osteogenesis. In: Sabharwal, S. (eds) Pediatric Lower Limb Deformities. Springer, Cham. https://doi.org/10.1007/978-3-319-17097-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17097-8_28

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17096-1

  • Online ISBN: 978-3-319-17097-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics