Skip to main content

Cement Reinforcement by Nanotubes

  • Conference paper
Nanotechnology in Construction

Abstract

Loading a matrix with nano-sized particles such as nanotubes (carbon or tungsten di-sulfide) is expected to improve the mechanical properties of composite materials better than traditional (macroscopic) fillers due to extra-ordinary mechanical properties accompanied by high surface area. One of the major challenges towards achieving this goal is an effective dispersion of the as-produced aggregated nanotubes. In this work we demonstrate a novel dispersion method, facilitating the integration of individual nanotubes in cement paste matrix. We demonstrate the effectiveness of our nanotubes dispersion method by enhancing both flexural strength and compressive strength of cement paste using carbon and tungsten di-sulfide nanotubes. Finally, a comprehensive fractography study indicates that both types of nanotubes fail via pull-out mechanism with an intermediate state of bridging mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CNT:

Carbon nanotube

NT:

Nanotube

PC:

Plain cement paste

SEM:

Scanning electron microscope

TEM:

Transmission electron microscope

WS2NT:

Tungsten di-sulfide nanotube

References

  1. Taylor, H. F. (1997). Cement chemistry. London: Thomas Telford.

    Book  Google Scholar 

  2. Bye, G. C. (1999). Portland cement: Composition, production and properties. London: Thomas Telford.

    Book  Google Scholar 

  3. Yu, M. F., Lourie, O., Dyer, M. J., Moloni, K., Kelly, T. F., & Ruoff, R. S. (2000). Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science, 287, 637.

    Article  Google Scholar 

  4. Peigney, A., Laurent, C., Flahaut, E., Bacsa, R. R., & Rousset, A. (2001). Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon, 39(4), 507–514.

    Article  Google Scholar 

  5. Tenne, R., Margulis, L., Genut, M., & Hodes, G. (1992). Polyhedral and cylindrical structures of tungsten disulphide. Nature, 360(6403), 444–446.

    Article  Google Scholar 

  6. Kaplan-Ashiri, I., Cohen, S. R., Gartsman, K., Ivanovskaya, V., Heine, T., Seifert, G., Wiesel, I., Wagner, H. D., & Tenne, R. (2006). On the mechanical behavior of WS2 nanotubes under axial tension and compression. Proceedings of the National Academy of Sciences of the United States of America, 103(3), 523–528.

    Article  Google Scholar 

  7. Tang, D.-M., Wei, X., Wang, M.-S., Kawamoto, N., Bando, Y., Zhi, C., Mitome, M., Zak, A., Tenne, R., & Golberg, D. (2013). Revealing the anomalous tensile properties of WS2 nanotubes by in situ transmission electron microscopy. Nano Letters, 13(3), 1034–1040.

    Article  Google Scholar 

  8. Shtein, M., Nadiv, R., Lachman, N., Daniel Wagner, H., & Regev, O. (2013). Fracture behavior of nanotube–polymer composites: Insights on surface roughness and failure mechanism. Composites Science and Technology, 87, 157–163.

    Article  Google Scholar 

  9. Shtein, M., Pri-bar, I., & Regev, O. (2013). A simple solution for the determination of pristine carbon nanotube concentration. Analyst, 138(5), 1490–1496.

    Article  Google Scholar 

  10. Konsta-Gdoutos, M. S., Metaxa, Z. S., & Shah, S. P. (2010). Multi-scale mechanical and fracture characteristics and early-age strain capacity of high performance carbon nanotube/cement nanocomposites. Cement and Concrete Composites, 32(2), 110–115.

    Article  Google Scholar 

  11. Makar, J. M., Margeson, J., & Luh, J. (2005). Carbon nanotube/cement composite – Early results and potential applications. 3rd International conference on Construction Materials: Performance, Innovation and Structural Implications, pp. 1–10.

    Google Scholar 

  12. Hull, D., & Clyne, T. (1996). An introduction to composite materials. Cambridge: Cambridge University Press.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roey Nadiv .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Nadiv, R., Shtein, M., Peled, A., Regev, O. (2015). Cement Reinforcement by Nanotubes. In: Sobolev, K., Shah, S. (eds) Nanotechnology in Construction. Springer, Cham. https://doi.org/10.1007/978-3-319-17088-6_29

Download citation

Publish with us

Policies and ethics