Skip to main content

Phosphoric Acid and its Interactions with Polybenzimidazole-Type Polymers

  • Chapter

Abstract

In high-temperature polymer electrolyte membranes, phosphoric acid is used as dopant for polybenzimidazole-type membranes to provide the protonic conductivity. In addition, phosphoric acid also serves as proton conductor in the porous electrodes in order to establish the three-phase boundary. In the first part of this chapter a short overview is given on the physico-chemical properties of (aqueous) phosphoric acid. In the second part the focus is on the adsorption of phosphoric acid as a protic electrolyte on polybenzimidazole-type polymers. Although polybenzimidazole-type membranes are routinely doped with phosphoric acid, few studies on the exact nature of the acid inside the membrane have been published. Experimental data from our institute and data compiled from literature indicate that the polymer chain is protonated by the acid and that the anions are bound by coulomb interactions. Additional electrolyte molecules can interact with the polymer chain by formation of H bonds or via H bonds with other H3PO4 molecules. It is demonstrated that the uptake of phosphoric acid can be described by a modified BET isotherm, assuming multilayer-like adsorption. The assumption of free phosphoric acid in the membrane at high doping levels is supported by Raman spectroscopy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    When considering an Arrhenius-type behaviour of the ionic conductivity σ i , the temperature-dependent activation energy E a is given by (8.9). Thus, one obtains with (8.10) for E a:

    $$ {E}_{\mathrm{a}}=RT+R\;{\left(\frac{T}{T-{T}_0}\right)}^2\kern0.5em {B}_{\sigma } $$
    (8.12)
  2. 2.

    The derivative of (8.22) with respect to c 0 at c 0  = 0 yields (initial slope):

    $$ {\left(\frac{d\theta }{d{c}_0}\right)}_{c_0=0}=zK=z\alpha {K}^{\prime } $$
    (8.25)
  3. 3.

    DemaTfO = Diethylmethylammonium trifluoromethanesulfonate.

  4. 4.

    NAFION® = Sulfonated tetrafluoroethylene based fluoropolymer-copolymer (DuPont).

  5. 5.

    E.g. polycondensates from 1,4,5,8-Naphthalene tetracarboxylic dianhydride, 2,2′-Benzidinesulfonic acid and Bis[4-(3-aminophenoxy)-phenyl]sulfone [86, 87].

References

  1. Liu F, Mohajeri S, Di Y et al (2014) Influence of the interaction between phosphoric acid and catalyst layers on the properties of HT-PEMFCs. Fuel Cells 14:750–757

    Article  Google Scholar 

  2. Maier W, Arlt T, Wippermann K et al (2012) Correlation of synchrotron X-ray radiography and electrochemical impedance spectroscopy for the investigation of HT-PEMFCs. J Electrochem Soc 159:F398–F404

    Article  Google Scholar 

  3. Schrödter K, Bettermann G, Staffel T et al (2000) Phosphoric acid and phosphates. Ullmann’s Encyclopedia of Industrial Chemistry. Wiley-VCH, Weinheim

    Google Scholar 

  4. Wainright JS, Wang J, Weng D et al (1995) Acid-doped polybenzimidazoles: a new polymer electrolyte. J Electromchem Soc 142:L121–L123

    Article  Google Scholar 

  5. Jones D, Roziere J (2001) Recent advances in the functionalisation of polybenzimidazole and polyetherketone for fuel cell applications. J Membr Sci 185:41–58

    Article  Google Scholar 

  6. Quartarone E, Mustarelli P (2012) Polymer fuel cells based on polybenzimidazole/H3PO4. Energy Environ Sci 5:6436–6444

    Article  Google Scholar 

  7. Asensio JA, Sánchez EM, Gómez-Romero P (2010) Proton-conducting membranes based on benzimidazole polymers for high-temperature PEM fuel cells. A chemical quest. Chem Soc Rev 39:3210–3239

    Article  Google Scholar 

  8. Chuang S, Hsu SLC (2006) Synthesis and properties of a new fluorine-containing polybenzimidazole for high-temperature fuel-cell applications. J Polym Sci A 44:4508–4513

    Article  Google Scholar 

  9. Li Q, He R, Berg RW et al (2004) Water uptake and acid doping of polybenzimidazoles as electrolyte membranes for fuel cells. Solid State Ionics 168:177–185

    Article  Google Scholar 

  10. Vilciauskas L, Tuckerman ME, Bester G et al (2012) The mechanism of proton conduction in phosphoric acid. Nat Chem 4:461–466

    Article  Google Scholar 

  11. Wang JT, Savinell RF, Wainright JS et al (1996) A H2/O2 fuel cell using acid doped polybenzimidazole as polymer electrolyte. Electrochim Acta 41:193–197

    Article  Google Scholar 

  12. Holleman AF, Wiberg E, Wiberg N (1995) Lehrbuch der anorganischen Chemie. Walter de Gruyther, Berlin

    Google Scholar 

  13. Elmore KL, Hatfield JD, Dunn RL et al (1966) Dissociation of phosphoric acid solutions at 25°. J Phys Chem 69:3520–3525

    Article  Google Scholar 

  14. Rudolph W, Steger WE (1991) Dissociation, structure, and rapid proton exchange of phosphoric acid in dilute aqueous solutions. V. Vibrational spectra of phosphoric acid. Z Phys Chem 172:49–59

    Google Scholar 

  15. Rudolph WW (2010) Raman- and infrared-spectroscopic investigations of dilute aqueous phosphoric acid solutions. Dalton Trans 39:9642–9653

    Article  MathSciNet  Google Scholar 

  16. Haynes WM (ed) (2012–2013) CRC Handbook of Chemistry and Physics, 93rd edn. Taylor & Francis Ltd., Boca Raton

    Google Scholar 

  17. Rondini S, Longhi P, Mussini PR et al (1987) Autoprotolysis constants in nonaqueous solvents and aqueous organic solvent mixtures. Pure Appl Chem 59:1693–1702

    Google Scholar 

  18. Munson RA (1964) Self-dissociative equilibria in molten phosphoric acid. J Phys Chem 68:3374–3377

    Article  Google Scholar 

  19. Sorensen TS (1964) The pKa of protonated a, b-unsaturated carboxylic acids. Can J Chem 42:724–730

    Article  Google Scholar 

  20. Higgins CE, Baldwin WH (1955) Dehydration of orthophosphoric acid. Anal Chem 27:1780–1783

    Article  Google Scholar 

  21. Huhti AL, Gartaganis PA (1956) The composition of the strong phosphoric acids. Can J Chem 34:785–797

    Article  Google Scholar 

  22. Jameson RF (1959) The composition of ‘strong’ phosphoric acids. J Chem Soc 1:752–759

    Article  Google Scholar 

  23. Westman AER, Beatty R (1966) Equations for calculating chain length distributions in polyphosphoric acids and polyphosphate glasses. J Am Ceram Soc 49:63–67

    Article  Google Scholar 

  24. Fontana BJ (1951) The vapor pressure of water over phosphoric acids. J Am Chem Soc 73:3348–3350

    Article  Google Scholar 

  25. Brown EH, Whitt CD (1952) Vapor pressure of phosphoric acids. Ind Eng Chem 44:615–618

    Article  Google Scholar 

  26. Kablukov IA, Zagwosdkin KI (1935) Die Dampfspannung der Phosphorsäurelösungen. Z Anorg Allg Chemie 224:315–321

    Article  Google Scholar 

  27. McDonald DI, Boyack JR (1969) Density, electrical conductivity, and vapor pressure of concentrated phosphoric acid. J Chem Eng Data 14:380–384

    Article  Google Scholar 

  28. Schmalz EO (1970) Bestimmung der Dampfdruckkurven von Wasser über Phosphorsäure. Z Phys Chem (Leipzig) 245:344–350

    Google Scholar 

  29. Dippel T, Kreuer KD, Lassègues JC et al (1993) Proton conductivity in fused phosphoric acid; A 1H/31P PFG-NMR and QNS study. Solid State lonics 61:41–46

    Article  Google Scholar 

  30. Greenwood NN, Thompson A (1959) The mechanism of electrical conduction in fused phosphoric and trideuterophosphoric acids. J Chem Soc 1:3485–3492

    Article  Google Scholar 

  31. Aihara Y, Sonai A, Hattori M et al (2006) Ion conduction mechanisms and thermal properties of hydrated and anhydrous phosphoric acids studied with 1H, 2H, and 31P NMR. J Phys Chem B 110:24999–25006

    Article  Google Scholar 

  32. Chung SH, Bajue S, Greenbaum SG (2000) Mass transport of phosphoric acid in water: a 1H and 31P pulsed gradient spin-echo nuclear magnetic resonance study. J Chem Phys 112:8515–8521

    Article  Google Scholar 

  33. Fontanella JJ, Wintersgill MC, Wainright JS et al (1998) High pressure electrical conductivity studies of acid doped polybenzimidazole. Electrochim Acta 43:1289–1294

    Article  Google Scholar 

  34. Smith A, Menzies AWC (1909) The electrical conductivity and viscosity of concentrated solutions of orthophosphoric acid. J Am Chem Soc 31:1191–1194

    Article  Google Scholar 

  35. Campbell AN (1926) The conductivity of phosphoric acid solutions at 0°. J Chem Soc 1:3021–3022

    Article  Google Scholar 

  36. Kakulin GP, Fedorchenko IG (1962) Electric conductance of concentrated phosphoric acid. Zh Neorg Khim 7:2485–2486

    Google Scholar 

  37. Fedorchenko IG, Kakulin GP, Kondratenko ZV (1965) Electric conductance of concentrated phosphoric acid at 100–200 °C. Zh Neorg Khim 10:1945–1946

    Google Scholar 

  38. Wydeven T (1966) Electrical conductivity of concentrated phosphoric acid from 25 °C to 60 °C. J Chem Eng Data 11:174–176

    Article  Google Scholar 

  39. Tsurko EN, Neueder R, Barthel J et al (1999) Conductivity of phosphoric acid, sodium, potassium, and ammonium phosphates in dilute aqueous solutions from 278.15 K to 308.15 K. J Solution Chem 28:973–999

    Article  Google Scholar 

  40. Chin DT, Chang HH (1989) On the conductivity of phosphoric acid electrolyte. J Appl Electrochem 19:95–99

    Article  Google Scholar 

  41. Kondratenko ZV, Fedorchenko IG, Kovalev IA (1967) Mathematical calculation of the density and viscosity of concentrated phosphoric acid solutions. Zh Prikl Khim 40:1947–1951

    Google Scholar 

  42. Kondratenko ZV, Fedorchenko IG (1959) Zh Neorg Khim 4:985

    Google Scholar 

  43. Fulcher GS (1925) Analysis of recent measurements of the viscosity of glasses. J Am Ceram Soc 8:339–355

    Article  Google Scholar 

  44. Tammann G, Hesse W (1926) Die Abhängigkeit der Viscosität von der Temperatur bei unterkühlten Flüssigkeiten. Z Anorg Allg Chemie 156:245–257

    Article  Google Scholar 

  45. Vogel H (1921) Das Temperaturabhängigkeitsgesetz der Viskosität von Flüssigkeiten. Phys Z 22:645–646

    Google Scholar 

  46. Doolittle AK (1951) Studies in Newtonian flow. I. The dependence of the viscosity of liquids on temperature. J Appl Phys 22:1031

    Article  Google Scholar 

  47. Doolittle AK (1951) Studies in Newtonian flow. II. The dependence of the viscosity of liquids on free-space. J Appl Phys 22:1471–1475

    Article  Google Scholar 

  48. Doolittle AK (1952) Studies in Newtonian flow. III. The dependence of the viscosity of liquids on molecular weight and free space. J Appl Phys 23:236–249

    Article  Google Scholar 

  49. Turnbull D, Cohen MH (1970) On the free-volume model of the liquid-glass transition. J Chem Phys 52:3038–3041

    Article  Google Scholar 

  50. Cohen MH, Turnbull D (1959) Molecular transport in liquids and glasses. J Chem Phys 31:1164–1169

    Article  Google Scholar 

  51. Ellis B (1976) The glass transition temperature of phosphoric acids. Nature 263:674–676

    Article  Google Scholar 

  52. Duecker HC, Haller W (1962) Determination of the dissociation equilibriums of water by a conductance method. J Phys Chem 66:225–229

    Article  Google Scholar 

  53. Horne RA, Courant RA, Johnson DS (1966) The dependence of ion-, proton-, water and electron transport processes on solvent structure in aqueous electrolyte solutions. Electrochim Acta 11:987–996

    Article  Google Scholar 

  54. Loewenstein A, Szöke A (1961) The activation energies of proton transfer reactions in water. J Am Chem Soc 84:1151–1154

    Article  Google Scholar 

  55. Perrault G (1961) Sur la conductibilité protonique dans l’eau pure. Compt Rend 252:4145–4147

    Google Scholar 

  56. McLin M, Angell CA (1988) Contrasting conductance/viscosity relations in liquid states of vitreous and polymer “solid” electrolytes. J Phys Chem 92:2083–2086

    Article  Google Scholar 

  57. McLin MG, Angell CA (1991) Ion-pairing effects on viscosity/conductance relations in Raman-characterized polymer electrolytes: LiCIO4 and NaCF3SO3 in PPG(4000). J Phys Chem 95:9464–9469

    Article  Google Scholar 

  58. Xu W, Cooper EI, Angell CA (2003) Ionic liquids: ion mobilities, glass temperatures, and fragilities. J Phys Chem B 107:6170–6178

    Article  Google Scholar 

  59. Herath MB, Creager SE, Kitaygorodskiy A et al (2010) Perfluoroalkyl, phosphonic and phosphinic acids as proton conductors for anhydrous proton-exchange membranes. Chem Phys Chem 11:2871–2878

    Google Scholar 

  60. Li Q, Jensen JO, Savinell RF et al (2009) High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog Polym Sci 34:449–477

    Article  Google Scholar 

  61. Asensio JA, Borro S, Gómez-Romero P (2004) Polymer electrolyte fuel cells based on phosphoric acid-impregnated poly(2,5-benzimidazole) membranes. J Electrochem Soc 151:A304–A310

    Article  Google Scholar 

  62. Brunauer S, Deming LS, Deming WE et al (1940) On a theory of the van der Waals adsorption of gases. J Am Chem Soc 62:1723–1732

    Article  Google Scholar 

  63. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  Google Scholar 

  64. Anderson RB (1946) Modifications of the Brunauer, Emmett and Teller Equation. J Am Chem Soc 68:686

    Article  Google Scholar 

  65. Anderson RB, Hall KW (1948) Modifications of the Brunauer, Emmett and Teller Equation II. J Am Chem Soc 70:1727

    Article  Google Scholar 

  66. de Boer JH (1953) The dynamical character of adsorption. Clarendon, Oxford

    Google Scholar 

  67. Guggenheim EA (1966) Applications of statistical mechanics. Clarendon, Oxford

    Google Scholar 

  68. Bratasz Ł, Kozłowska A, Kozłowski R (2012) Analysis of water adsorption by wood using the Guggenheim-Anderson-de Boer equation. Eur J Wood Wood Prod 70:445–451

    Article  Google Scholar 

  69. Jonquières A, Fane A (1998) Modified BET models for modeling water vapor sorption in hydrophilic glassy polymers and systems deviating strongly from ideality. J Appl Polym Sci 67:1415–1430

    Article  Google Scholar 

  70. Karoyo AH, Wilson LD (2013) Tunable macromolecular-based materials for the adsorption of perfluorooctanoic and octanoic acid anions. J Colloid Interface Sci 402:196–203

    Article  Google Scholar 

  71. Monleón Pradas M, Salmerón Sánchez M, Gallego Ferrer G et al (2004) Thermodynamics and statistical mechanics of multilayer adsorption. J Chem Phys 121:8524–8531

    Article  Google Scholar 

  72. Timmermann EO (2003) Multilayer sorption parameters: BET or GAB values? Colloids and Surfaces A 220:235–260

    Article  Google Scholar 

  73. Diaz LA, Abuin GC, Corti HR (2009) Water and phosphoric acid uptake of poly [2,5-benzimidazole] (ABPBI) membranes prepared by low and high temperature casting. J Power Sources 188:45–50

    Article  Google Scholar 

  74. He R, Che Q, Sun B (2008) The acid doping behavior of polybenzimidazole membranes in phosphoric acid for proton exchange membrane fuel cells. Fiber Polym 9:679–684

    Article  Google Scholar 

  75. Sadeghi M, Moadel H, Khatti S et al (2010) Dual-mode sorption of inorganic acids in polybenzimidazole (PBI) membrane. J Macromol Sci B 49:1128–1135

    Article  Google Scholar 

  76. Conti F, Majerus A, Di Noto V et al (2012) Raman study of the polybenzimidazole-phosphoric acid interactions in membranes for fuel cells. Phys Chem Chem Phys 14:10022–10026

    Article  Google Scholar 

  77. Majerus A, Conti F, Korte C et al (2012) Thermogravimetric and spectroscopic investigation of the interaction between polybenzimidazole and phosphoric acid. ECS Trans 50:1155–1165

    Article  Google Scholar 

  78. Silverstein RM, Webster FX (2002) Spectroscopic identification of organic compounds. Wiley, New York

    Google Scholar 

  79. Giffin GA, Conti F, Lavina S et al (2014) A vibrational spectroscopic and modeling study of poly(2,5-benzimidazole) (ABPBI)—phosphoric acid interactions in high temperature PEMFC membranes. Int J Hydrogen Energy 39:2776–2784

    Article  Google Scholar 

  80. Glipa X, Bonnet B, Mula B et al (1999) Investigation of the conduction properties of phosphoric and sulfuric acid doped polybenzimidazole. J Mater Chem 9:3045–3049

    Article  Google Scholar 

  81. Daletou MK, Geormezi M, Vogli E et al (2014) The interaction of H3PO4 and steam with PBI and TPS polymeric membranes. A TGA and Raman study. J Mater Chem A 2:1117–1127

    Article  Google Scholar 

  82. Cherif M, Mgaidi A, Ammar N et al (2000) A new investigation of aqueous orthophosphoric acid speciation using Raman spectroscopy. J Solution Chem 29:254–269

    Article  Google Scholar 

  83. Nores-Pondal FJ, Buera MP, Corti HR (2010) Thermal properties of phosphoric acid-doped polybenzimidazole membranes in water and methanol-water mixtures. J Power Sources 195:6389–6397

    Article  Google Scholar 

  84. Ma Y-L, Wainright JS, Litt MH et al (2004) Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells. J Electrochem Soc 151:A8–A16

    Article  Google Scholar 

  85. Leykin AY, Askadskii AA, Vasilev VG et al (2010) Dependence of some properties of phosphoric acid doped PBIs on their chemical structure. J Membr Sci 347:69–74

    Article  Google Scholar 

  86. Lee S-Y, Ogawa A, Kanno M et al (2010) Nonhumidified intermediate temperature fuel cells using protic ionic liquids. J Am Chem Soc 132:2183–2195

    Article  Google Scholar 

  87. Lee S-Y, Yasuda T, Watanabe M (2010) Fabrication of protic ionic liquid/sulfonated polyimide composite membranes for non-humidified fuel cells. J Power Sources 195:5909–5914

    Article  Google Scholar 

  88. Di Noto V, Negro E, Sanchez J-Y et al (2010) Structure-relaxation interplay of a new nanostructured membrane based on tetraethylammonium trifluoromethanesulfonate ionic liquid and neutralized Nafion 117 for high-temperature fuel cells. J Am Chem Soc 132:2183–2195

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Werner Lehnert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Korte, C., Conti, F., Wackerl, J., Lehnert, W. (2016). Phosphoric Acid and its Interactions with Polybenzimidazole-Type Polymers. In: Li, Q., Aili, D., Hjuler, H., Jensen, J. (eds) High Temperature Polymer Electrolyte Membrane Fuel Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-17082-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17082-4_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17081-7

  • Online ISBN: 978-3-319-17082-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics