Skip to main content

Abstract

The chapter describes common methods for membrane characterization. While it does not go into theoretical depths, general explanations, limitations, practical notes, and critical comments are provided. Covered methods include determination of water uptake and acid doping level, measurement of proton conductivity, molecular weight analysis by viscosity and size exclusion chromatography, determination of solubility and gel content, filtration of polymer solutions, characterization of mechanical properties (tensile testing, compression and creep tests, dynamic mechanical analysis), permeability of hydrogen and methanol and electroosmotic drag of water as well as definition and control of humidity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang JS, Cleemann LN, Steenberg T et al (2014) High molecular weight polybenzimidazole membranes for high temperature PEMFC. Fuel Cells 14:7–15

    Article  Google Scholar 

  2. Yuan Y, Johnson F, Cabasso I (2009) Polybenzimidazole (PBI) molecular weight and Mark-Houwink equation. J Appl Polym Sci 112:3436–3441

    Article  Google Scholar 

  3. Buckley A, Stuetz D, Serad GA (1987) Polybenzimidazoles. In: Kroschwitz JI (ed) Encyclopedia of polymer science and engineering. Wiley, New York, pp 572–601

    Google Scholar 

  4. Savinell RF, Wainright JS, Litt M (1998) High temperature polymer electrolyte fuel cells. In: Gottesfeld S, Fuller TF (eds) Electrochemical Society Series. 98(27):81–90

    Google Scholar 

  5. Kojima T, Yokota R, Kochi M et al (1980) Dilute solution properties of a polybenzimidazole. J Polym Sci B 18:1673–1683

    Google Scholar 

  6. Liao JH, Li QF, Rudbeck HC et al (2011) Oxidative degradation of polybenzimidazole membranes as electrolytes for high temperature proton exchange membrane fuel cells. Fuel Cells 11:745–755

    Article  Google Scholar 

  7. Choe EW, Conciatori AB (1985) Aminoaryl ester reactant, two-stage melt polymerization. US Patent 4,535,144

    Google Scholar 

  8. Gulledge AL, Chen X, Benicewicz BC (2014) Investigation of sequence isomer effects in AB-polybenzimidazole polymers. J Polym Sci A Polym Chem 52:619–628

    Article  Google Scholar 

  9. Han JY, Lee JY, Kim HY et al (2014) Synthesis and characterization of fluorene-based polybenzimidazole copolymer for gas separation. J Appl Polym Sci 131:40521

    Google Scholar 

  10. Ng F, Bae B, Miyatake K et al (2011) Polybenzimidazole block sulfonated poly(arylene ether sulfone) ionomers. Chem Commun 47:8895–8897

    Article  Google Scholar 

  11. Dominguez PH, Grygiel K, Weber J (2014) Nanostructured poly(benzimidazole) membranes by N-alkylation. eXPRESS Polym Lett 8:30–38

    Article  Google Scholar 

  12. Huang W, Qing SB, Yang JT et al (2008) Preparation and characterization of soluble sulfonated polybenzimidazole for proton exchange membrane materials. Chinese J Polym Sci 26:121–129

    Article  Google Scholar 

  13. Robinson RA (2005) The water activities of lithium chloride solutions up to high concentrations at 25°. Trans Faraday Soc 41:756-758

    Google Scholar 

  14. Li Q, He R, Berg RW et al (2004) Water uptake and acid doping of polybenzimidazoles as electrolyte membranes for fuel cells. Solid State Ionics 168:177–185

    Article  Google Scholar 

  15. Majerus A, Conti F, Korte C et al (2012) Thermogravimetric and spectroscopic investigation of the interaction between polybenzimidazole and phosphoric acid. Abstract 1510. Paper presented at Honolulu PRiME 2012, Honolulu, 7–9 October 2012

    Google Scholar 

  16. Mader JA, Benicewicz BC (2011) Synthesis and properties of segmented block copolymers of functionalised polybenzimidazoles for high-temperature PEM fuel cells. Fuel Cells 11:222–237

    Article  Google Scholar 

  17. Lee HJ, Lee DH, Henkensmeier D et al (2012) Synthesis and characterization of H3PO4 doped poly(benzimidazole-co-benzoxazole) membranes for high temperature polymer electrolyte fuel cells. Bull Korean Chem Soc 33:3279–3284

    Article  Google Scholar 

  18. Li X, Chen X, Benicewicz BC (2013) Synthesis and properties of phenylindane-containing polybenzimidazole (PBI) for high-temperature polymer electrolyte membrane fuel cells (PEMFCs). J Power Sources 243:796–804

    Article  Google Scholar 

  19. Hasiotis C, Li Q, Deimede V et al (2001) Development and characterization of acid-doped polybenzimidazole/sulfonated polysulfone blend polymer electrolytes for fuel cells. J Electrochem Soc 148:A513–A519

    Article  Google Scholar 

  20. Hanley TR, Helminiak TE, Benner CL (1978) Expansion of aromatic heterocyclic polymers in salt solution. J Appl Polym Sci 22:2965–2978

    Article  Google Scholar 

  21. Li X, Qian G, Chen X, Benicewicz BC (2013) Synthesis and characterization of a new fluorine-containing polybenzimidazole (PBI) for proton-conducting membranes in fuel cells. Fuel Cells 13:832–842

    Google Scholar 

  22. Leaflet “Polybenzimidazole (PBI) S26 Solution”, PBI performance products, Inc. http://www.pbiproducts.com/images/uploads/main/Polymers/Solutions_Brochure.pdf

  23. Murata M, Nakamura T (1999) Polybenzimidazole compounds in solution and a process for the preparation thereof. US Patent 5,902,876

    Google Scholar 

  24. Belack J, Kundler I, Schmidt TJ (2008) Celtec-MEAs: life time, degradation modes and mitigation strategies. Paper presented at Progress MEA 2008, La Grande Motte, 21–24 September 2008

    Google Scholar 

  25. Molleo MA, Chen X, Ploehn HJ et al (2014) High polymer content 3,5-pyridine-polybenzimidazole copolymer membranes with improved compressive properties. Fuel Cells 14:16–25

    Article  Google Scholar 

  26. Frequently asked questions: dynamic mechanical analysis (DMA), a beginner’s guide, booklet from Perkin Elmer. http://www.perkinelmer.com/CMSResources/Images/44-74546GDE_IntroductionToDMA.pdf

  27. Dynamic mechanical analysis basics: Part 1: How DMA works. Technical note, Perkin Elmer. http://www.perkinelmer.com/CMSResources/Images/44-74304app_thermaldynmechanalybasicspart1.pdf

  28. Iqbal HMS, Bhowmik S, Benedictus R (2014) Process optimization of solvent based polybenzimidazole adhesive for aerospace applications. Int J Adhes Adhes 48:188–193

    Article  Google Scholar 

  29. He R, Li Q, Bach A et al (2006) Physicochemical properties of phosphoric acid doped polybenzimidazole membranes for fuel cells. J Membr Sci 277:38–45

    Article  Google Scholar 

  30. Sakai T, Takenako H, Wakabayashi N et al (1985) Gas permeation properties of solid polymer electrolyte (SPE) membranes. J Electrochem Soc 132:1328–1332

    Article  Google Scholar 

  31. Baker RW (2004) Membrane technology and applications, 2nd edn. Wiley, Chichester, p 304

    Book  Google Scholar 

  32. Kim BG, Henkensmeier D, Kim HJ et al (2014) Sulfonation of PIM-1—towards highly oxygen permeable binders for fuel cell application. Macromol Res 22:92–98

    Article  Google Scholar 

  33. Cleemann LN, Buazar F, Li Q et al (2013) Catalyst degradation in high temperature proton exchange membrane fuel cells based on acid doped polybenzimidazole membranes. Fuel Cells 13:822–831

    Google Scholar 

  34. Wang JT, Wasmus S, Savinell RF (1996) Real-time mass spectrometric study of the methanol crossover in a direct methanol fuel cell. J Electrochem Soc 143:1233–1238

    Article  Google Scholar 

  35. Mamlouk M, Scott K, Hidayati N (2011) High temperature direct methanol fuel cell based on phosphoric acid PBI membrane. J Fuel Cell Sci Technol 8:061009

    Article  Google Scholar 

  36. Gubler L, Kramer D, Belack J et al (2007) Celtec-V. A polybenzimidazole-based membrane for the direct methanol fuel cell. J Electrochem Soc 154:B981–B987

    Article  Google Scholar 

  37. Tricoli V (1998) Proton and methanol transport in poly(perfluorosulfonate) membranes containing Cs+ and H+ cations. J Electrochem Soc 145:3798–3801

    Article  Google Scholar 

  38. Woo Y, Oh SY, Kang YS et al (2003) Synthesis and characterization of sulfonated polyimide membranes for direct methanol fuel cell. J Membr Sci 220:31–45

    Article  Google Scholar 

  39. Yang CC, Lee YJ, Yang JM (2009) Direct methanol fuel cell (DMFC) based on PVA/MMT composite polymer membranes. J Power Sources 188:30–37

    Article  Google Scholar 

  40. Savinell RF (2012) Recent research of the PBI/PA system as a proton conductor in electrochemical systems. Presentation at Carisma 2012, Copenhagen, Denmark. http://www.hotmea.kemi.dtu.dk/~/media/Centre/ENRGK_HotMEA/carisma2012/presentations_posters/savinell_carisma_2012.ashx

  41. Weng D, Wainright JS, Landau U et al (1996) Electro-osmotic drag coefficient of water and methanol in polymer electrolytes at elevated temperatures. J Electrochem Soc 143:1260–1263

    Article  Google Scholar 

  42. Luo Z, Chang Z, Zhang Y et al (2010) Electro-osmotic drag coefficient and proton conductivity in Nafion membrane for PEMFC. Int J Hydrogen Energy 35:3120–3124

    Article  Google Scholar 

  43. Peng Z, Morin A, Huguet P et al (2011) In-situ measurement of electroosmotic drag coefficient in Nafion membrane for the PEMFC. J Phys Chem B 115:12835–12844

    Article  Google Scholar 

  44. Flynn JH, Wall LA (1966) A quick, direct method for the determination of activation energy from thermogravimetric data. Polym Lett 4:323–328

    Article  Google Scholar 

  45. TA Instruments Application Brief TA-125. http://www.tainstruments.co.jp/application/pdf/Thermal_Library/Applications_Briefs/TA125.PDF

  46. Yang HE, Chen LJ, He F et al (2012) NM Cable insulation service life time prediction using materials degradation kinetics. Proceedings of the 61st international wire & cable symposium (IWCS), pp 791–798. http://iwcs.omnibooksonline.com/data/papers/2012/16-5.pdf

  47. Toop DJ (1971) Theory of life testing and use of thermogravimetric analysis to predict the thermal life of wire enamels. IEEE Trans Electr Insul EI-6:2–14

    Article  Google Scholar 

  48. Inaba M, Kinumoto T, Kiriake M et al (2006) Gas crossover and membrane degradation in polymer electrolyte fuel cells. Electrochim Acta 51:5746–5753

    Article  Google Scholar 

  49. Gubler L, Koppenol WH (2012) Kinetic simulation of the chemical stabilization mechanism in fuel cell membranes using cerium and manganese redox couples. J Electrochem Soc 159:B211–B218

    Article  Google Scholar 

  50. Kinumoto T, Inaba M, Nakayama Y et al (2006) Durability of perfluorinated ionomer membrane against hydrogen peroxide. J Power Sources 158:1222–1228

    Article  Google Scholar 

  51. Chang Z, Pu H, Wan D et al (2010) Effects of adjacent groups of benzimidazole on antioxidation of polybenzimidazoles. Polym Degrad Stab 95:2648–2653

    Article  Google Scholar 

  52. Qian G, Benicewicz BC (2009) Synthesis and characterization of high molecular weight hexafluoroisopropylidene-containing polybenzimidazole for high-temperature polymer electrolyte membrane fuel cells. J Polym Sci A Polym Chem 47:4064–4073

    Article  Google Scholar 

  53. Han M, Zhang G, Liu Z, Wang S et al (2011) Cross-linked polybenzimidazole with enhanced stability for high temperature proton exchange membrane fuel cells. J Mater Chem 21:2187–2193

    Article  Google Scholar 

  54. Liao JH, Yang JS, Li QF et al (2013) Oxidative degradation of acid doped polybenzimidazole membranes and fuel cell durability in the presence of ferrous ions. J Power Sources 238:516–522

    Article  Google Scholar 

  55. He RH, Li Q, Xiao G et al (2003) Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors. J Membr Sci 226:169–184

    Article  Google Scholar 

  56. Wagner W, Pruss A (1993) International equations for the saturation properties of ordinary water substance - revised according to the international temperature scale of 1990. J Phys Chem Ref Data 22:783–787

    Article  Google Scholar 

  57. Costamagna P, Srinivasan S (2001) Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000: Part II. Engineering, technology development and application aspects. J Power Sources 102:253–269

    Article  Google Scholar 

  58. Gibbard HF, Scatchar G (1973) Liquid-vapor equilibrium of aqueous lithium-chloride, from 25° to 100°C and from 1.0 to 18.5 molal, and related properties. J Chem Eng Data 18:293–298

    Article  Google Scholar 

  59. Schechter A, Savinell RF, Wainright JS et al (2009) 1H and 31P NMR study of phosphoric acid-doped polybenzimidazole under controlled water activity. J Electrochem Soc 156:B283–B290

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding by the Innovation Fund Denmark (4M Centre 0603-00527B and KDFuelCell 3047‐00007B), KIST’s K-GRL project and the Korea-Denmark green technology cooperative research program. 

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Henkensmeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Henkensmeier, D., Aili, D. (2016). Techniques for PBI Membrane Characterization. In: Li, Q., Aili, D., Hjuler, H., Jensen, J. (eds) High Temperature Polymer Electrolyte Membrane Fuel Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-17082-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17082-4_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17081-7

  • Online ISBN: 978-3-319-17082-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics