Skip to main content

Abstract

This chapter briefly reviews durability and stability issues with key materials and components for HT-PEMFCs, including the polymer membrane, the doping acid, the electrocatalyst, the catalyst support and bipolar plates. Degradation mechanisms and their dependence on fuel cell operating conditions are summarized as well. To date, lifetimes of this type of fuel cells of up to 18,000 h with degradation rates of around 5 μV/h at temperatures of 150–160 °C have been demonstrated using hydrogen and air under constant moderate load. However, the degradation rate increases by a factor 10 when the cell is exposed to start-up–shutdown or load cycling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Xie J, Wood DL, Wayne DM et al (2005) Durability of PEFCs at high humidity conditions. J Electrochem Soc 152:A104–A113

    Article  Google Scholar 

  2. Yasuda K, Taniguchi A, Akita T et al (2006) Platinum dissolution and deposition in the polymer electrolyte membrane of a PEM fuel cell as studied by potential cycling. Phys Chem Chem Phys 8:746–752

    Article  Google Scholar 

  3. Knights SD, Colbow KM, St-Pierre J et al (2004) Aging mechanisms and lifetime of PEFC and DMFC. J Power Sources 127:127–134

    Article  Google Scholar 

  4. Stevens DA, Dahn JR (2005) Thermal degradation of the support in carbon-supported platinum electrocatalysts for PEM fuel cells. Carbon 43:179–188

    Article  Google Scholar 

  5. Taniguchi A, Akita T, Yasuda K et al (2004) Analysis of electrocatalyst degradation in PEMFC caused by cell reversal during fuel starvation. J Power Sources 130:42–49

    Article  Google Scholar 

  6. Borup R, Meyers J, Pivovar B et al (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107:3904–3951

    Article  Google Scholar 

  7. Wu J, Yuan XZ, Martina JJ et al (2008) A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. J Power Sources 184:104–119

    Article  Google Scholar 

  8. Zhang SS, Yuan XZ, Wang HJ et al (2009) A review of accelerated stress tests of MEA durability in PEM fuel cells. Int J Hydrogen Energy 34:388–404

    Article  MathSciNet  Google Scholar 

  9. Shao YY, Yin GP, Wang ZB et al (2007) Proton exchange membrane fuel cell from low temperature to high temperature: material challenges. J Power Sources 167:235–242

    Article  Google Scholar 

  10. Mader J, Xiao L, Schmidt TJ et al (2008) Polybenzimidazole/acid complexes as high-temperature membranes. Springer, Heidelberg, pp 63–124

    Google Scholar 

  11. http://energy.gov/eere/fuelcells/downloads/fuel-cell-technologies-office-multi-year-research-development-and-22

  12. Li QF, Jensen JO, Savinell RF et al (2009) High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog Polym Sci 34:449–477

    Article  Google Scholar 

  13. Maier W, Arlt T, Wannek C et al (2010) In-situ synchrotron X-ray radiography on high temperature polymer electrolyte fuel cells. Electrochem Commun 12:1436–1438

    Article  Google Scholar 

  14. Gaudiana R, Conley RT (1969) Weak-link versus active carbon degradation routes in the oxidation of aromatic heterocyclic systems. J Polym Sci B 7:793

    Article  Google Scholar 

  15. Samms SR, Wasmus S, Savinell RF (1996) Thermal stability of proton conducting acid doped polybenzimidazole in simulated fuel cell environments. J Electrochem Soc 143:1225–1232

    Article  Google Scholar 

  16. Musto P, Karasz FE, Macknight WJ (1993) Fourier transform infra-red spectroscopy on the thermo-oxidative degradation of polybenzimidazole and of a polybenzimidazole/polyetherimide blend. Polymer 34:2934

    Article  Google Scholar 

  17. Li QF, Pan C, Jensen JO et al (2007) Cross-linked polybenzimidazole membranes for fuel cells. Chem Mater 19:350–352

    Article  Google Scholar 

  18. Kerres J, Schönberger F, Chromik A et al (2008) Partially fluorinated arylene polyethers and their ternary blend membranes with PBI and H3PO4. Part I. Synthesis and characterisation of polymers and binary blend membranes. Fuel Cells 8:175–187

    Article  Google Scholar 

  19. Lobato J, Cañizares P, Rodrigo MA et al (2007) Improved polybenzimidazole films for H3PO4-doped PBI-based high temperature PEMFC. J Membr Sci 306:47–55

    Article  Google Scholar 

  20. Li QF, Rudbeck HC, Chromik A et al (2010) Properties, degradation and high temperature fuel cell test of different types of PBI and PBI blend membranes. J Membr Sci 347:260–270

    Article  Google Scholar 

  21. Liao JH, Li Q, Rudbeck HC et al (2011) Oxidative degradation of polybenzimidazole membranes as electrolytes for high temperature proton exchange membrane fuel cells. Fuel Cells 11:745–755

    Article  Google Scholar 

  22. Liao J, Yang J, Li Q et al (2013) Oxidative degradation of acid doped polybenzimidazole membranes and fuel cell durability in the presence of ferrous ions. J Power Sources 238:516–522

    Article  Google Scholar 

  23. Chang Z, Pu H, Wan D et al (2010) Effects of adjacent groups of benzimidazole on antioxidation of polybenzimidazoles. Polym Degrad Stab 95:2648–2653

    Article  Google Scholar 

  24. Xu HJ, Chen KC, Guo XX et al (2007) Synthesis of novel sulfonated polybenzimidazole and preparation of cross-linked membranes for fuel cell application. Polymer 48:5556–5564

    Article  Google Scholar 

  25. Chang ZH, Pu HT, Wan DC et al (2009) Chemical oxidative degradation of Polybenzimidazole in simulated environment of fuel cells. Polym Degrad Stab 94:1206–1212

    Article  Google Scholar 

  26. Han M, Zhang G, Liu Z et al (2011) Cross-linked polybenzimidazole with enhanced stability for high temperature proton exchange membrane fuel cells. J Mater Chem 21:2187–2193

    Article  Google Scholar 

  27. Aili D, Hansen MK, Pan C et al (2011) Phosphoric acid doped membranes based on Nafion®, PBI and their blends—membrane preparation, characterization and steam electrolysis testing. Int J Hydrogen Energy 36:6985–6993

    Article  Google Scholar 

  28. Aili D, Li Q, Christensen E et al (2011) Crosslinking of polybenzimidazole membranes by divinylsulfone post-treatment for high-temperature proton exchange membrane fuel cell applications. Polym Int 60:1201–1207

    Article  Google Scholar 

  29. Aili D, Cleemann LN, Li Q et al (2012) Thermal curing of PBI membranes for high temperature PEM fuel cells. J Mater Chem 22:5444–5453

    Article  Google Scholar 

  30. Yang J, Li Q, Cleemann LN et al (2012) Synthesis and properties of poly(aryl sulfone benzimidazole) and its copolymers for high temperature membrane electrolytes for fuel cells. J Mater Chem 22:11185–11195

    Article  Google Scholar 

  31. Yang J, Li Q, Cleemann LN et al (2013) Crosslinked hexafluoropropylidene polybenzimidazole membranes with chloromethyl polysulfone for fuel cell applications. Adv Energy Mater 3:662–630

    Google Scholar 

  32. Wannek C, Konradi I, Mergel J et al (2009) Redistribution of phosphoric acid in membrane electrode assemblies for high-temperature polymer electrolyte fuel cells. Int J Hydrogen Energy 34:9479–9485

    Article  Google Scholar 

  33. Li QF, He RH, Berg RW et al (2004) Water uptake and acid doping of polybenzimidazoles as electrolyte membranes for fuel cells. Solid State Ion 168:177–185

    Article  Google Scholar 

  34. Mori T, Honji A, Kahara T et al (1988) Acid absorbancy of an electrode and its cell performance history. J Electrochem Soc 135:1104–1109

    Article  Google Scholar 

  35. Brown EH, Whitt CD (1952) Vapor pressure of phosphoric acid. Ind Eng Chem 44:615–618

    Article  Google Scholar 

  36. Yu S, Xiao L, Benicewicz BC (2008) Durability studies of PBI-based high temperature PEMFCs. Fuel Cells 8:165–174

    Article  Google Scholar 

  37. Fontana B (1951) The vapor pressure of water over phosphoric acids. J Am Chem Soc 73:3348–3350

    Article  Google Scholar 

  38. Büchi FN, Inaba M, Schmidt TJ (2009) Polymer electrolyte fuel cell durability. Springer, New York

    Book  Google Scholar 

  39. Staudt R (2006) Development of polybenzimidazole-based high temperature membrane and electrode assemblies for stationary applications. Annual Progress Report 2006

    Google Scholar 

  40. Wannek C, Kohnen B, Oetien HF et al (2008) Durability of ABPBI-based MEAs for high temperature PEMFCs at different operating conditions. Fuel Cells 8:87–95

    Article  Google Scholar 

  41. Oono Y, Sounai A, Hori M (2009) Influence of the phosphoric acid-doping level in a polybenzimidazole membrane on the cell performance of high-temperature proton exchange membrane fuel cells. J Power Sources 189:943–949

    Article  Google Scholar 

  42. Pinar FJ, Cañizares P, Rodrigo MA et al (2011) Scale-up of a high temperature polymer electrolyte membrane fuel cell based on polybenzimidazole. J Power Sources 196:4306–4313

    Article  Google Scholar 

  43. Oh HS, Cho Y, Lee WH et al (2013) Modification of electrodes using Al2O3 to reduce phosphoric acid loss and increase the performance of high-temperature proton exchange membrane fuel cells. J Mater Chem A 1:2578–2581

    Article  Google Scholar 

  44. Akita H, Ichikawa M, Nosaki K et al (2000) Solid polymer electrolytes. US Patent 6,124,060

    Google Scholar 

  45. Arlt T, Maier W, Totzke C et al (2014) Synchrotron X-ray radioscopic in situ study of high-temperature polymer electrolyte fuel cells—effect of operation conditions on structure of membrane. J Power Sources 246:290–298

    Article  Google Scholar 

  46. Boillat P, Biesdorf J, Oberholzer P et al (2014) Evaluation of neutron imaging for measuring phosphoric acid distribution in high temperature PEFCs. J Electrochem Soc 161:F192–F198

    Article  Google Scholar 

  47. Oono Y, Sounai A, Hori M (2012) Long-term cell degradation mechanism in high-temperature proton exchange membrane fuel cells. J Power Sources 210:366–373

    Article  Google Scholar 

  48. Martin S, Li Q, Steenberg T et al (2014) Binderless electrodes for high-temperature polymer electrolyte membrane fuel cells. J Power Sources 272:559–566

    Article  Google Scholar 

  49. Eberhardt SH, Marone F, Stampanoni M et al (2014) Quantifying phosphoric acid in high-temperature polymer electrolyte fuel cell components by X-ray tomographic microscopy. J Synchrotron Radiat 21:1319–1326

    Article  Google Scholar 

  50. Zhang S, Yuan X-Z, Hin JNC et al (2009) A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells. J Power Sources 194:588–600

    Article  Google Scholar 

  51. Shao YY, Yin GP, Gao YZ (2007) Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. J Power Sources 171:558–566

    Article  Google Scholar 

  52. Zhang J (2008) PEM fuel cell electrocatalysts and catalyst layers: fundamentals and applications. Springer, London

    Book  Google Scholar 

  53. Honji A, Mori T, Tamura K et al (1988) Agglomeration of platinum particles supported on carbon in phosphoric acid. J Electrochem Soc 135:355–359

    Article  Google Scholar 

  54. Tseung ACC, Dhara SC (1975) Loss of surface-area by platinum and supported platinum electrocatalyst. Electrochim Acta 20:681–683

    Article  Google Scholar 

  55. Yu P, Pemberton M, Plasse P (2005) PtCo/C cathode catalyst for improved durability in PEMFCs. J Power Sources 144:11–20

    Article  Google Scholar 

  56. Colon-Mercado HR, Kim H, Popov BN (2004) Durability study of Pt3Ni1 catalysts as cathode in PEM fuel cells. Electrochem Commun 6:795–799

    Article  Google Scholar 

  57. Inaba M (2009) Durability of electrocatalysts in polymer electrolyte fuel cells. ECS Trans 25:573–581

    Article  Google Scholar 

  58. Bindra P, Clouser SJ, Yeager E (1979) Platinum dissolution in concentrated phosphoric acid. J Electrochem Soc 126:1631–1632

    Article  Google Scholar 

  59. Aragane J, Murahashi T, Odaka T (1988) Change of Pt distribution in the active components of phosphoric acid fuel cell. J Electrochem Soc 135:844–850

    Article  Google Scholar 

  60. Aragane J, Urushibata H, Murahashi T (1996) Effect of operational potential on performance decay rate in a phosphoric acid fuel cell. J Appl Electrochem 26:147–152

    Article  Google Scholar 

  61. Wang XP, Kumar R, Myers DJ (2006) Effect of voltage on platinum dissolution relevance to polymer electrolyte fuel cells. Electrochem Solid-State Lett 9:A225–A227

    Article  Google Scholar 

  62. Pourbaix M (1974) Atlas of electrochemical equilibria in aqueous solutions’, Texas, Section 13.6, Platinum. In: Van Muylder J, De Zoubov N, Pourbaix M (eds) published by National Association of Corrosion Engineers, p 378–383

    Google Scholar 

  63. Ferreira PJ, la O GJ, Shao-Horn Y et al (2005) Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells—a mechanistic investigation. J Electrochem Soc 152:A2256–A2271

    Article  Google Scholar 

  64. Ahluwalia RK, Arisetty S, Wang X et al (2013) Thermodynamics and kinetics of platinum dissolution from carbon-supported electrocatalysts in aqueous media under potentiostatic and potentiodynamic conditions. J Eletrcochem Soc 160:F447–F455

    Article  Google Scholar 

  65. Mitsushima S, Koizumi Y, Uzuka S et al (2008) Dissolution of platinum in acidic media. Electrochim Acta 54:455–460

    Article  Google Scholar 

  66. Matsumoto M, Miyazaki T, Imai H (2011) Oxygen-enhanced dissolution of platinum in acidic electrochemical environments. J Phys Chem C 115:11163–11169

    Article  Google Scholar 

  67. Hyde PJ, Maggiore CJ, Srinivasan S (1984) Use of a nuclear microprobe in the study of fuel cell electrodes. J Electroanal Chem 168:383–394

    Article  Google Scholar 

  68. Yasuda K, Taniguchi A, Akita T et al (2006) Characteristics of a platinum black catalyst layer with regard to platinum dissolution phenomena in a membrane electrode assembly. J Electrochem Soc 153:A1599–A1603

    Article  Google Scholar 

  69. Roen LM, Paik CH, Jarvic TD (2004) Electrocatalytic corrosion of carbon support in PEMFC cathodes. Electrochem Solid-State Lett 7:A19–A22

    Article  Google Scholar 

  70. Loutfy RO (1986) Electrochemical characterization of carbon black. Carbon 24:127–130

    Article  Google Scholar 

  71. Kinoshita K, Bett JAS (1973) Potentiodynamic analysis of surface oxides on carbon blacks. Carbon 11:403–411

    Article  Google Scholar 

  72. Antonucci PL, Pino L, Giordano N et al (1989) A comparative analysis of structural and surface effects in the electrochemical corrosion of carbons. Mater Chem Phys 21:495–506

    Article  Google Scholar 

  73. Rositani F, Antonucci PL, Minutoli M et al (1987) Infrared analysis of carbon blacks. Carbon 25:325–332

    Article  Google Scholar 

  74. Kangasniemi KH, Condit DA, Jarvi TD (2004) Characterization of Vulcan electrochemically oxidized under simulated PEM fuel cell conditions. J Electrochem Soc 151:E125–E132

    Article  Google Scholar 

  75. Qi ZG, Buelte S (2006) Effect of open circuit voltage on performance and degradation of high temperature PBI-H3PO4 fuel cells. J Power Sources 161:1126–1132

    Article  Google Scholar 

  76. Kinoshita K, Bett J (1973) Electrochemical oxidation of carbon-black in concentrated phosphoric acid at 135°C. Carbon 11:237–247

    Article  Google Scholar 

  77. Mathias MF, Makharia R, Gasteiger HA et al (2005) J Electrochem Soc Interface 14:24–35

    Google Scholar 

  78. Oh H-S, Lee J-H, Kim H (2012) Electrochemical carbon corrosion in high temperature proton exchange membrane fuel cells. Int J Hydrogen Energy 37:10844–10849

    Article  Google Scholar 

  79. Oono Y, Fukuda T, Sounai A et al (2010) Influence of operating temperature on cell performance and endurance of high temperature proton exchange membrane fuel cells. J Power Sources 195:1007–1014

    Article  Google Scholar 

  80. Hartnig C, Schmidt TJ (2011) Simulated start-stop as a rapid aging tool for polymer electrolyte fuel cell electrodes. J Power Sources 196:5564–5572

    Article  Google Scholar 

  81. Ferreira-Aparicio P, Folgado MA, Daza L (2009) High surface area graphite as alternative support for proton exchange membrane fuel cell catalysts. J Power Sources 192:57–62

    Article  Google Scholar 

  82. Landsman DA, Luczak FJ (2003) Catalyst studies and coating technologies. In: Vielstichm W, Lamm A, Gasteiger HA (eds) Handbook of fuel cells, vol 3. Wiley, London, pp 811–831

    Google Scholar 

  83. Cleemann LN, Buazar F, Li Q et al (2013) Catalyst degradation in high temperature proton exchange membrane fuel cells based on acid doped polybenzimidazole membranes. Fuel Cells 13:822–831

    Google Scholar 

  84. Engl T, Waltar KE, Gubler L et al (2014) Second cycle is dead: advanced electrode diagnostics for high-temperature polymer electrolyte fuel cells. J Electrochem Soc 161:F500–F505

    Article  Google Scholar 

  85. Liu G, Zhang HM, Zhai YF et al (2007) Pt4ZrO2/C cathode catalyst for improved durability in high temperature PEMFC based on H3PO4 doped PBI. Electrochem Commun 9:135–141

    Article  Google Scholar 

  86. Perchthaler M, Ossiander T, Juhart V et al (2013) Tungsten materials as durable catalyst supports for fuel cell electrodes. J Power Sources 243:472–480

    Article  Google Scholar 

  87. Okamoto M, Fujigaya T, Nakashima N (2009) Design of an assembly of poly(benzimidazole), carbon nanotubes, and Pt nanoparticles for a fuel-cell electrocatalyst with an ideal interfacial nanostructure. Small 5:735–740

    Article  Google Scholar 

  88. Fujigaya T, Okamoto M, Nakashima N (2009) Design of an assembly of pyridine-containing polybenzimidazole, carbon nanotubes and Pt nanoparticles for a fuel cell electrocatalyst with a high electrochemically active surface area. Carbon 47:3227–3232

    Article  Google Scholar 

  89. Hafez IH, Berber MR, Fujigaya T et al (2014) Enhancement of platinum mass activity on the surface of polymer-wrapped carbon nanotube-based fuel cell electrocatalysts. Sci Rep 4:8

    Article  Google Scholar 

  90. Berber MR, Hafez IH, Fujigaya T et al (2014) Durability analysis of polymer-coated pristine carbon nanotube-based fuel cell electrocatalysts under non-humidified conditions. J Mater Chem A 2:19053–19059

    Article  Google Scholar 

  91. Berber MR, Fujigaya T, Nakashima N (2014) High-temperature polymer electrolyte fuel cell using poly(vinylphosphonic acid) as an electrolyte shows a remarkable durability. ChemCatChem 6:567–571

    Article  Google Scholar 

  92. Wang HL, Turner JA (2008) Austenitic stainless steels in high temperature phosphoric acid. J Power Sources 180:803–807

    Article  Google Scholar 

  93. Hartnig C, Schmidt TJ (2011) On a new degradation mode for high-temperature polymer electrolyte fuel cells: how bipolar plate degradation affects cell performance. Electrochim Acta 56:4237–4242

    Article  Google Scholar 

  94. Liu F, Kvesic M, Wippermann K et al (2013) Effect of spiral flow field design on performance and durability of HT-PEFCs. J Electrochem Soc 160:F892–F897

    Article  Google Scholar 

  95. Schmidt TJ, Baurmeister J (2006) Durability and reliability in high-temperature reformed hydrogen PEFCs. ECS Trans 3:861–869

    Article  Google Scholar 

  96. Schmidt TJ, Baurmeister J (2008) Properties of high-temperature PEFC Celtec (R)-P 1000 MEAs in start/stop operation mode. J Power Sources 176(2):428–434

    Article  Google Scholar 

  97. Oono Y, Sounai A, Hori M (2013) Prolongation of lifetime of high temperature proton exchange membrane fuel cells. J Power Sources 241:87–93

    Article  Google Scholar 

  98. Yang JS, Cleemann LN, Steenberg T et al (2014) High molecular weight polybenzimidazole membranes for high temperature PEMFC. Fuel Cells 14:7–15

    Article  Google Scholar 

  99. Li Q, He R, Jensen JO et al (2004) PBI-based polymer membranes for high temperature fuel cells—preparation, characterizations and fuel cell demonstrations. Fuel Cells 4:147–159

    Article  Google Scholar 

  100. Xiao L, Zhang H, Scanlon E et al (2005) High-temperature polybenzimidazole fuel cell membranes via a sol-gel process. Chem Mater 17:5328–5333

    Article  Google Scholar 

  101. Stolten D, Wannek C, Dohle H, Blum L, Mergel J, Peters R (2007) Strategy, status and outlook for HTPEFC development for APU application (Abstract 162). Fuel Cell Seminar 2007, San Antonio, 15–19 Oct 2007

    Google Scholar 

  102. Lee H-J, Kim BG, Lee DH et al (2011) Demonstration of a 20 W class high-temperature polymer electrolyte fuel cell stack with novel fabrication of a membrane electrode assembly. Int J Hydrogen Energy 36:5521–5526

    Article  Google Scholar 

  103. Galbiati S, Baricci A, Casalegno A et al (2013) Degradation in phosphoric acid doped polymer fuel cells: a 6000 h parametric investigation. Int J Hydrogen Energy 38:6469–6480

    Article  Google Scholar 

  104. Kondratenko MS, Ponomarev II, Gallyamov MO et al (2013) Novel composite Zr/PBI-O-PhT membranes for HT-PEFC applications. Beilstein J Nanotechnol 4:481–492

    Article  Google Scholar 

  105. Modestov AD, Tarasevich MR, Filimonov VY et al (2009) Degradation of high temperature MEA with PBI-H3PO4 membrane in a life test. Electrochim Acta 54:7121–7127

    Article  Google Scholar 

  106. Mocoteguy P, Ludwig B, Scholta J et al (2009) Long term testing in continuous mode of HT-PEMFC based H3PO4/PBI Celtec-P MEAs for μ-CHP applications. Fuel Cells 9:325–348

    Article  Google Scholar 

  107. Molleo MA, Chen X, Ploehn HJ et al (2014) High polymer content 3,5-pyridine-polybenzimidazole copolymer membranes with improved compressive properties. Fuel Cells 14:16–25

    Article  Google Scholar 

  108. Janßen H, Supra J, Lüke L et al (2013) Development of HT-PEFC stacks in the kW range. Int J Hydrogen Energy 38:4705–4713

    Article  Google Scholar 

  109. Li Q (2005) High temperature proton exchange membranes for fuel cells. Department of Chemistry, Technical University of Denmark, Kgs Lyngby

    Google Scholar 

  110. Qian G, Benicewicz BC (2011) Fuel impurity effects on high temperature PBI based fuel cell membranes. In: Gasteiger HA, Weber A, Narayanan SR, Jones D, Strasser P, Swider Lyons K et al (eds) Polymer electrolyte fuel cells 11. Electrochemical Society, Pennington, pp 1441–1448

    Google Scholar 

  111. Das SK, Reis A, Berry KJ (2009) Experimental evaluation of CO poisoning on the performance of a high temperature proton exchange membrane fuel cell. J Power Sources 193:691–698

    Article  Google Scholar 

  112. Li QF, He RH, Gao JA et al (2003) The CO poisoning effect in PEMFCs operational at temperatures up to 200 °C. J Electrochem Soc 150:A1599–A1605

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by ForskEl program (DuRaPEM III no.2013-1-12064 and SmartMEA no.2014-1-12218) and Innovation Fund Denmark (4M Centre 0603-00527B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Oluf Jensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jakobsen, M.T.D., Jensen, J.O., Cleemann, L.N., Li, Q. (2016). Durability Issues and Status of PBI-Based Fuel Cells. In: Li, Q., Aili, D., Hjuler, H., Jensen, J. (eds) High Temperature Polymer Electrolyte Membrane Fuel Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-17082-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17082-4_22

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17081-7

  • Online ISBN: 978-3-319-17082-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics