Skip to main content

Abstract

This chapter describes the most commonly used electrochemical measurement techniques to characterize HT-PEM membrane electrode assemblies (MEAs). Moreover, it will be shown what kind of information can be subtracted from each technique in order to provide a correct diagnosis of the HT-PEMFC behavior. Detailed descriptions of test procedures and methodology routines for each one of the electrochemical techniques are important for the comparison of data between different working groups is not always possible, thus leading to the need of standardized test protocols. The described test procedures and routines have already been verified in two European Projects. Micro-computed tomography X-ray technique has been introduced as a rather new post-mortem three-dimensional imaging method of the specimens under investigation. Therefore, μ-CT imaging enables the nondestructive characterization of usually hidden interfaces in HT-PEM MEAs that cannot be done by conventional microscopy techniques. MEA contact pressure plays an important role for degradation of MEA materials that can affect performance and lifetime of the HT-PEMFC. Thus, electrochemical and ex situ imaging techniques have jointly been used to investigate the effect of contact pressure increase as well as contact pressure cycling to verify the state-of-the-art of HT-PEM technology in different commercial MEAs. The importance to define long-term test routines will be discussed in the last section of this chapter. Long-term testing should reproduce real operation conditions and determine the issues to identify, understand, and minimize degradation mechanisms that limit the applicability of HT-PEM technology nowadays in systems ready for the market.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Seland F, Berning T, Borresen B et al (2006) Improving the performance of high-temperature PEM fuel cells based on PBI electrolyte. J Power Sources 160:27–36

    Article  Google Scholar 

  2. Aleksandrova E, Hiesgen R, Eberhard D et al (2007) Proton conductivity study of a fuel cell membrane with nanoscale resolution. ChemPhysChem 8:519–522

    Article  Google Scholar 

  3. Jensen JO, Li Q, Pan C et al (2009) Degradation of high temperature PEM fuel cells. Paper presented at the HyFC Academy School on Fuel Cells and Hydrogen, Vancouver, Canada

    Google Scholar 

  4. Lehnert W, Maier W, Wannek C et al (2012) Mobility and distribution of phosphoric acid in high-temperature polymer electrolyte fuel cells. Paper presented at the 3rd CARISMA international conference, Copenhagen, Denmark

    Google Scholar 

  5. Chandan A, Hattenberger M, El-kharouf A et al (2013) High temperature (HT) polymer electrolyte membrane fuel cells (PEMFC)—a review. J Power Sources 231:264–278

    Article  Google Scholar 

  6. Schmidt TJ, Baurmeister J (2006) Durability and reliability in high-temperature reformed hydrogen PEFCs. ECS Trans 3:861–869

    Article  Google Scholar 

  7. Mader J, Xiao L, Schmidt TJ et al (2008) Polybenzimidazole/acid complexes as high-temperature membranes. Adv Polym Sci 216:63–124

    Google Scholar 

  8. Oono Y, Sounai A, Hori M (2012) Long-term cell degradation mechanism in high-temperature proton exchange membrane fuel cells. J Power Sources 210:366–373

    Article  Google Scholar 

  9. Yu S, Xiao L, Benicewicz BC (2008) Durability studies of PBI-based high temperature PEMFCs. Fuel Cells 8:165–174

    Article  Google Scholar 

  10. Mocotéguy P, Ludwig B, Scholta J et al (2010) Long-term testing in dynamic mode of HT-PEMFC H3PO4/PBI Celtec-P based membrane electrode assemblies for micro-CHP applications. Fuel Cells 10:1–13

    Article  Google Scholar 

  11. Gou B, Na WK, Diong B (2009) Fuel cells: modeling, control, and applications. Power electronics and applications series. CRC, Boca Raton

    Book  Google Scholar 

  12. Yang JS, Cleemann LN, Steenberg T et al (2014) High molecular weight polybenzimidazole membranes for high temperature PEMFC. Fuel Cells 14:7–15

    Article  Google Scholar 

  13. Lobato J, Cañizares P, Rodrigo MA et al (2011) Enhancement of the fuel cell performance of a high temperature proton exchange membrane fuel cell running with titanium composite polybenzimidazole-based membranes. J Power Sources 196:8265–8271

    Article  Google Scholar 

  14. Aili D, Cleemann LN, Li Q et al (2012) Thermal curing of PBI membranes for high temperature PEM fuel cells. J Mater Chem 22:5444–5453

    Article  Google Scholar 

  15. Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486:43–51

    Article  Google Scholar 

  16. Cleemann LN, Buazar F, Li Q et al (2013) Catalyst degradation in high temperature proton exchange membrane fuel cells based on acid doped polybenzimidazole membranes. Fuel Cells 13:822–831

    Google Scholar 

  17. Diedrichs A, Rastedt M, Pinar JF et al (2013) Effect of compression on the performance of a HT-PEM fuel cell. J Appl Electrochem 43:1079–1099

    Article  Google Scholar 

  18. Fuel cells and hydrogen joint undertaking (2011) Multi-annual implementation plan 2008–2013

    Google Scholar 

  19. Department of Energy (2012) Technical plan—fuel cells

    Google Scholar 

  20. Diedrichs A, Wagner P (2012) Performance analysis of a high-temperature polymer electrolyte membrane fuel cell under mechanical compression control. ECS Trans 50:1137–1153

    Article  Google Scholar 

  21. Pinar FJ, Rastedt M, Pilinski N et al (2014) Effect of compression cycling on polybenzimidazole-based high-temperature polymer electrolyte membrane fuel cells. Fuel Cells 15(1):140–149

    Article  Google Scholar 

  22. Rastedt M, Pinar FJ, Bruns N et al (2013) Micro-computed tomography imaging of HT-PEM fuel cells under contact pressure control. ECS Trans 58:443–452

    Article  Google Scholar 

  23. Rastedt M, Pinar FJ, Wagner P (2014) Impact of contact pressure cycling on non-woven GDLs of HT-PEM fuel cells. ECS Trans 64:509–514

    Article  Google Scholar 

  24. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  25. Yuan X-Z, Song C, Wang H et al (2010) Electrochemical impedance spectroscopy in PEM fuel cells: fundamentals and applications, 1st edn. Springer, London

    Book  Google Scholar 

  26. Srinivasan S (2006) Fuel cells—from fundamentals to applications. Springer, New York

    Google Scholar 

  27. Carrette L, Friedrich KA, Stimming U (2001) Fuel cells—fundamentals and applications. Fuel Cells 1:5–39

    Article  Google Scholar 

  28. Zhang J, Zhang H, Wu J et al (2013) PEM fuel cell testing and diagnosis. Elsevier, New York, pp 225–241

    Book  Google Scholar 

  29. Galbiati S, Baricci A, Casalegno A et al (2013) Degradation in phosphoric acid doped polymer fuel cells: a 6000 h parametric investigation. Int J Hydrogen Energy 38:6469–6480

    Article  Google Scholar 

  30. Trasatti S (2003) Reaction mechanism and rate determining steps. In: Vielstich W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells—fundamentals, technology and application, vol 2. Wiley, Chichester, pp 79–87

    Google Scholar 

  31. Sammes N (2006) Fuel cell technology. Engineering materials and processes. Springer, London

    Google Scholar 

  32. Williams MC (2004) Fuel cell handbook. US Department of Energy, Morgantown

    Google Scholar 

  33. Seyfang BC (2009) Simplification and investigation of polymer electrolyte fuel cells using micro-patterned glassy carbon flow fields. PhD, Swiss Federal Institute of Technology Zürich (ETHZ), Zürich

    Google Scholar 

  34. Naughton MS, Moradia AA, Kenis PJA (2012) Quantitative analysis of single-electrode plots to understand in-situ behavior of individual electrodes. J Electrochem Soc 159:B761–B769

    Article  Google Scholar 

  35. Cooper KR, Ramani V, Fenton JM et al (2005) Experimental methods and data analyses for polymer electrolyte fuel cells. Scriber Associates, Southern Pines

    Google Scholar 

  36. Orazem ME, Tribollet B (2008) Electrochemical impedance spectroscopy, The electrochemical society series. Wiley, Hoboken

    Book  Google Scholar 

  37. Orazem ME (2013) Application of impedance spectroscopy to characterize polymer-electrolyte-membrane (PEM) fuel cells. ECS Trans 50:247–260

    Article  Google Scholar 

  38. Lvovich VF (2012) Impedance spectroscopy: applications to electrochemical and dielectric phenomena. Wiley, New Jersey

    Book  Google Scholar 

  39. https://dcode.eifer.uni-karlsruhe.de/D-CODEProject

  40. Chen C-Y, Lai W-H (2010) Effects of temperature and humidity on the cell performance and resistance of a phosphoric acid doped polybenzimidazole fuel cell. J Power Sources 195:7152–7159

    Article  Google Scholar 

  41. Andreasen SJ, Jespersen JL, Schaltz E et al (2009) Characterisation and modelling of a high temperature PEM fuel cell stack using electrochemical impedance spectroscopy. Fuel Cells 4:463–473

    Article  Google Scholar 

  42. Yuan X, Wang H, Sun JC et al (2007) AC impedance technique in PEM fuel cell diagnosis—a review. Int J Hydrogen Energy 32:4365–4380

    Article  Google Scholar 

  43. Wagner N (2002) Characterization of membrane electrode assemblies in polymer electrolyte fuel cells using a.c. impedance spectroscopy. J Appl Electrochem 32:859–863

    Article  Google Scholar 

  44. Paganin VA, Oliveira CLF, Ticianelli EA et al (1998) Modelistic interpretation of the impedance response of a polymer electrolyte fuel cell. Electrochim Acta 43:3761–3766

    Article  Google Scholar 

  45. Springer TE, Zawodzinski TA, Wilson MS et al (1996) Characterization of polymer electrolyte fuel cells using AC impedance spectroscopy. J Electrochem Soc 143:587–598

    Article  Google Scholar 

  46. Andreasen SJ, Vang JR, Kær SK (2011) High temperature PEM fuel cell performance characterisation with CO and CO2 using electrochemical impedance spectroscopy. Int J Hydrogen Energy 36:9815–9830

    Article  Google Scholar 

  47. Zhang J, Tang Y, Song C et al (2007) Polybenzimidazole-membrane-based PEM fuel cell in the temperature range of 120-200 °C. J Power Sources 172:163–171

    Article  Google Scholar 

  48. Boillot M, Bonnet C, Jatroudakis N et al (2006) Effect of gas dilution on PEM fuel cell performance and impedance response. Fuel Cells 6:31–37

    Article  Google Scholar 

  49. Pinar Pérez FJ, Pilinski N, Rastedt M et al (2015) Performance of a high-temperature PEM fuel cell operated with oxygen enriched cathode air and hydrogen from synthetic reformate. Int J Hydrogen Energy 40(15):5432–5438

    Article  Google Scholar 

  50. Kocha SS, Yang JD, Yi JS (2006) Characterization of gas crossover and its implications in PEM fuel cells. AlChE J 52:1916–1925

    Article  Google Scholar 

  51. Cooper KR (2008) In situ PEMFC fuel crossover & electrical short circuit measurement. Fuel Cell Magazine August/September, pp 34–35

    Google Scholar 

  52. Zhang J, Xie Z, Zhang J et al (2006) High temperature PEM fuel cells. J Power Sources 160:872–891

    Article  Google Scholar 

  53. Vengatesan S, Fowler MW, Yuan X-Z et al (2011) Diagnosis of MEA degradation under accelerated relative humidity cycling. J Power Sources 196:5045–5052

    Article  Google Scholar 

  54. Parrondo J, Mijangos F, Rambabu B (2010) Platinum/tin oxide/carbon cathode catalyst for high temperature PEM fuel cell. J Power Sources 195:3977–3983

    Article  Google Scholar 

  55. Li QF, Rudbeck HC, Chromik A et al (2010) Properties, degradation and high temperature fuel cell test of different types of PBI and PBI blend membranes. J Membr Sci 347:260–270

    Article  Google Scholar 

  56. Bai Z, Bello M, Chang H et al (2009) Polymer membranes for fuel cells. Springer, New York

    Google Scholar 

  57. Lobato J, Cañizares P, Rodrigo MA et al (2010) Study of the influence of the amount of polybenzimidazole-H3PO4 in the catalytic layer of a high temperature proton exchange membrane fuel cell. Int J Hydrogen Energy 35:1347–1355

    Article  Google Scholar 

  58. Su H, Jao T-C, Pasupathi S et al (2014) A novel dual catalyst layer structured gas diffusion electrode for enhanced performance of high temperature proton exchange membrane fuel cell. J Power Sources 246:63–67

    Article  Google Scholar 

  59. Orfanidi A, Daletou MK, Sygellou L et al (2013) The role of phosphoric acid in the anodic electrocatalytic layer in high temperature PEM fuel cells. J Appl Electrochem 43:1101–1116

    Article  Google Scholar 

  60. Lindström RW, Kortsdottir K, Wesselmark M et al (2010) Active area determination of porous Pt electrodes used in polymer electrolyte fuel cells: temperature and humidity effects. J Electrochem Soc 157:B1795–B1801

    Article  Google Scholar 

  61. Vidakovic T, Christov M, Sundmacher K (2007) The use of CO stripping for in situ fuel cell catalyst characterization. Electrochim Acta 52:5606–5613

    Article  Google Scholar 

  62. Wu J, Yuan XZ, Wang H et al (2008) Diagnostic tools in PEM fuel cell research: part I. Electrochemical techniques. Int J Hydrogen Energy 33:1735–1746

    Article  Google Scholar 

  63. Lobato J, Cañizares P, Rodrigo MA et al (2010) Study of the catalytic layer in polybenzimidazole-based high temperature PEMFC: effect of platinum content on the carbon support. Fuel Cells 10:312–319

    Article  Google Scholar 

  64. Schneider IA, Kramer D, Wokaun A et al (2007) Effect of inert gas flow on hydrogen underpotential deposition measurements in polymer electrolyte fuel cells. Electrochem Commun 9:1607–1612

    Article  Google Scholar 

  65. Ferrier D, Kinoshita K, McHardy J et al (1975) Hydrogen adsorption on platinum in hot concentrated phosphoric acid. J Electroanal Chem Interfacial Electrochem 61:233–237

    Article  Google Scholar 

  66. Engl T, Waltar KE, Gubler L et al (2014) Second cycle is dead: advanced electrode diagnostics for high-temperature polymer electrolyte fuel cells. J Electrochem Soc 161:F500–F505

    Article  Google Scholar 

  67. Jespersen JL, Kær SK (2007) Break-in and Performance Issues on a Single Cell PBI-based PEM Fuel Cell. Interantional workshop on degradation issues of fuel cells Crete, Greece:Poster 

    Google Scholar 

  68. Tingeloef T, Ihonen JK (2009) A rapid break-in procedure for PBI fuel cells. Int J Hydrogen Energy 34:6452–6456

    Article  Google Scholar 

  69. Maier W, Arlt T, Wippermann K et al (2012) Correlation of synchrotron X-ray radiography and electrochemical impedance spectroscopy for the investigation of HT-PEFCs. J Electrochem Soc 159:F398–F404

    Article  Google Scholar 

  70. Andreasen SJ, Kær SK (2012) Analysis of high temperature polymer electrolyte membrane fuel cell impedance during break-in. Fuel Cells 2012 Science and Technology:Oral Publication

    Google Scholar 

  71. Yuan X, Sun JC, Blanco M et al (2006) AC impedance diagnosis of a 500 W PEM fuel cell stack. Part I: stack impedance. J Power Sources 161:920–928

    Article  Google Scholar 

  72. Kondratenko MS, Gallyamov MO, Khokhlov AR (2012) Performance of high temperature fuel cells with different types of PBI membranes as analysed by impedance spectroscopy. Int J Hydrogen Energy 37:2596–2602

    Article  Google Scholar 

  73. Kwon K, Park JO, Yoo DY et al (2009) Phosphoric acid distribution in the membrane electrode assembly of high temperature proton exchange membrane fuel cells. Electrochim Acta 54:6570–6575

    Article  Google Scholar 

  74. Parrondo J, Rao CV, Ghatty SL et al (2011) Electrochemical performance measurements of PBI-based high-temperature PEMFCs. Int J Electrochem 2011:1–8

    Article  Google Scholar 

  75. Boaventura M, Mendes A (2010) Activation procedures characterization of MEA based on phosphoric acid doped PBI membranes. Int J Hydrogen Energy 35:11649–11660

    Article  Google Scholar 

  76. Jalani NH, Ramani M, Ohlsson K et al (2006) Performance analysis and impedance spectral signatures of high temperature PBI-phosphoric acid gel membrane fuel cells. J Power Sources 160:1096–1103

    Article  Google Scholar 

  77. Araya SS, Andreasen SJ, Kaer SK (2012) Experimental characterization of the poisoning effects of methanol-based reformate impurities on a PBI-based high temperature PEM fuel cell. Energies 5:4251–4267

    Article  Google Scholar 

  78. Andreasen SJ, Mosbæk R, Vang JR et al (2010) EIS characterization of the poisoning effects of CO and CO2 on a PBI based HT-PEM fuel cell. In: ASME 2010 eighth international fuel cell science, engineering and technology conference, New York, p 10

    Google Scholar 

  79. Jhong H-RM, Brushett FR, Yin L et al (2012) Combining structural and electrochemical analysis of electrodes using micro-computed tomography and a microfluidic fuel cell. J Electrochem Soc 159:B292–B298

    Article  Google Scholar 

  80. James JP (2012) Micro-computed tomography reconstruction and analysis of the porous transport layer in polymer electrolyte membrane fuel cells. Master, Queen’s University, Kingston

    Google Scholar 

  81. Runte M (2012) Untersuchung des Einflusses verschiedener Anpressdrücke auf Hochtemperatur Polymerelektrolytmembranbrennstoffzellen mittels μ-Computertomographie. Bachelor, Fachhochschule Münster, NEXT ENERGY EWE-Forschungszentrum für Energietechnologie e.V., Münster, Oldenburg

    Google Scholar 

  82. SkyScan NV (2005) Desktop X-ray microtomograph. SkyScan Instruction Manual Aartselaar, Belgium

    Google Scholar 

  83. Nitta I, Hottinen T, Himanen O et al (2007) Inhomogeneous compression of PEMFC gas diffusion layer: part I. Experimental. J Power Sources 171:26–36

    Article  Google Scholar 

  84. Nitta I, Himanen O, Mikkola M (2008) Contact resistance between gas diffusion layer and catalyst layer of PEM fuel cell. Electrochem Commun 10:47–51

    Article  Google Scholar 

  85. Nitta I (2008) Inhomogeneous compression of PEMFC gas diffusion layers. Dissertation, University of Technology, Helsinki

    Google Scholar 

  86. Lee W, Ho C-H, Van Zee JW et al (1999) The effects of compression and gas diffusion layers on the performance of a PEM fuel cell. J Power Sources 84:45–51

    Article  Google Scholar 

  87. Ge J, Higier A, Liu H (2006) Effect of gas diffusion layer compression on PEM fuel cell performance. J Power Sources 159:922–927

    Article  Google Scholar 

  88. Kleemann J, Finsterwalder F, Tillmetz W (2009) Characterisation of mechanical behaviour and coupled electrical properties of polymer electrolyte membrane fuel cell gas diffusion layers. J Power Sources 190:92–102

    Article  Google Scholar 

  89. Chang WR, Hwang JJ, Weng FB et al (2007) Effect of clamping pressure on the performance of a PEM fuel cell. J Power Sources 166:149–154

    Article  Google Scholar 

  90. Mathias MF, Roth J, Fleming J et al (2003) Diffusion media materials and characterisation. In: Vielstich W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells—fundamentals, technology and application, vol 3. Wiley, New York, pp 517–537

    Google Scholar 

  91. Karwey M (2012) Untersuchung der mechanischen Belastung von Brennstoffzellenmembranen in Testzellen durch auftretenden Anpressdruck. Bachelor, Fachhochschule Südwestfalen and Next Energy, Oldenburg

    Google Scholar 

  92. Molleo M, Qian G, Chen X et al (2013) Mechanical property improvements in PBI membranes. In: 4th European PEFC and H2 forum 2013, Luzerne, Switzerland 2nd to 5th of July 2013

    Google Scholar 

  93. Wilkinson DP, St-Pierre J (2003) Durability. In: Vielstich W, Gasteiger HA, Lamm A (eds) Handbook of fuel cells—fundamentals, technology and applications, vol 3. Wiley, New York, pp 611–626

    Google Scholar 

  94. Borup R, Meyers J, Pivovar B et al (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107:3904–3951

    Article  Google Scholar 

  95. Wu J, Yuan XZ, Martin JJ et al (2008) A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. J Power Sources 184:104–119

    Article  Google Scholar 

  96. Hu J, Zhang H, Zhai Y et al (2006) Performance degradation studies on PBI/H3PO4 high temperature PEMFC and one-dimensional numerical analysis. Electrochim Acta 52:394–401

    Article  Google Scholar 

  97. Liu G, Zhang H, Hu J et al (2006) Studies of performance degradation of a high temperature PEMFC based on H3PO4-doped PBI. J Power Sources 162:547–552

    Article  Google Scholar 

  98. Zhang H, Zhai Y, Liu G et al (2007) Degradation study on MEA in H3PO3/PBI high-temperature PEMFC life test. J Electrochem Soc 154:B72–B76

    Article  Google Scholar 

  99. Oono Y, Sounai A, Hori M (2009) Influence of the phosphoric acid-doping level in a polybenzimidazole membrane on the cell performance of high-temperature proton exchange membrane fuel cells. J Power Sources 189:943–949

    Article  Google Scholar 

  100. Wannek C, Kohnen B, Oetjen HF et al (2008) Durability of ABPBI-based MEAs for high temperature PEMFCs at different operating conditions. Fuel Cells 8:87–95

    Article  Google Scholar 

  101. Li Q, Jensen JO, Savinell RF et al (2009) High temperature proton exchange membranes based on polybenzimidazoles for fuel cells. Prog Polym Sci 34:449–477

    Article  Google Scholar 

  102. Schmidt TJ (2006) Durability and degradation in high-temperature polymer electrolyte fuel cells. ECS Trans 1:19–31

    Article  Google Scholar 

  103. Zhang S, Yuan X, Wang H et al (2009) A review of accelerated stress tests of MEA durability in PEM fuel cells. Int J Hydrogen Energy 34:388–404

    Article  MathSciNet  Google Scholar 

  104. Aarhaug A (2011) Assessment of PEMFC durability by effluent analysis. PhD, Norwegian University of Science and Technology, Trondheim

    Google Scholar 

  105. Spernjak D, Fairweather J, Mukundan R et al (2012) Influence of the microporous layer on carbon corrosion in the catalyst layer of a polymer electrolyte membrane fuel cell. J Power Sources 214:386–398

    Article  Google Scholar 

  106. Tang H, Qi Z, Ramani M et al (2006) PEM fuel cell cathode carbon corrosion due to the formation of air/fuel boundary at the anode. J Power Sources 158:1306–1312

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the European Commission for supporting this work by the FCH-JU through the project CISTEM (01.06.2013–30.06.2016, Grant Agreement Number 325262) and the project DEMMEA (01.01.2010–31.12.2012, Grant Agreement Number 245156). Marco Zobel and Benedict Hartmann valuable help from CHP group at NEXT ENERGY are widely appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Wagner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pinar, F.J., Rastedt, M., Pilinski, N., Wagner, P. (2016). Characterization of HT-PEM Membrane-Electrode-Assemblies. In: Li, Q., Aili, D., Hjuler, H., Jensen, J. (eds) High Temperature Polymer Electrolyte Membrane Fuel Cells. Springer, Cham. https://doi.org/10.1007/978-3-319-17082-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17082-4_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17081-7

  • Online ISBN: 978-3-319-17082-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics