Skip to main content

Part of the book series: Lecture Notes in Geosystems Mathematics and Computing ((LNGMC))

  • 718 Accesses

Abstract

As we developed a method of fundamental solutions in quasistatic poroelasticity in the previous chapter, this chapter is dedicated to the application of said method. First, we give some details on the implementation of the method for solving initial boundary value problems of quasistatic poroelasticity on the square (−1, 1)2. This introduces several method parameters which can be organized in three groups. Using several examples with different types of boundary conditions and different behavior, each group is investigated separately with regard to its influence on the performance of the method of fundamental solutions which is judged by approximation quality. Concentrating on well performing parameter method, we investigate the distribution of approximation errors in time and space. Next, we compare results using a sophisticated vs. a simple solution scheme for the resulting system of linear equations. This is followed by a comparison of results produced by the different methods of fundamental solutions developed in the previous chapter. Moreover, we briefly investigate whether a recently suggested variant of the method of fundamental solutions for time-dependent problems is applicable in quasistatic poroelasticity. The chapter is rounded out by a short discussion on the approximation of solutions with steeper gradients and an exemplary application of the method of fundamental solutions for an initial boundary value problem on the cube (−1, 1)3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is usually not necessary to define the corresponding pseudo-boundary \(\hat{\varGamma }\) explicitly.

References

  1. Abousleiman, Y., Cheng, A.H.D., Cui, L., Detournay, E., Roegiers, J.C.: Mandel’s problem revisited. Géotechnique 46, 187–195 (1996)

    Article  Google Scholar 

  2. Alves, C.J.S.: On the choice of source points in the method of fundamental solutions. Eng. Anal. Bound. Elem. 33, 1348–1361 (2009)

    Article  MathSciNet  Google Scholar 

  3. Ansorge, R., Sonar, T.: Mathematical Models of Fluid Dynamics. Wiley, Weinheim (2009)

    Book  Google Scholar 

  4. Augustin, M., Caiazzo, A., Fiebach, A., Fuhrmann, J., John, V., Linske, A., Umla, R.: An assesment of discretizations for convection-dominated convection-diffusion equations. Comput. Method. Appl. Mech. Eng. 200, 3395–3409 (2011)

    Article  Google Scholar 

  5. Barnett, A.H., Betcke, T.: Stability and convergence of the method of fundamental solutions for Helmholtz problems on analytic domains. J. Comput. Phys. 227, 7003–7026 (2008)

    Article  MathSciNet  Google Scholar 

  6. Bauer, F., Gutting, M., Lukas, M.A.: Evaluation of parameter choice methods for regularization of ill-posed problems in geomathematics. In: W. Freeden, Z. Nashed, T. Sonar (eds.) Handbook of Geomathematics, 2nd edn. Springer, New York (2015). Accepted for publication

    Google Scholar 

  7. Bauer, F., Lukas, M.A.: Comparingparameter [sic] choice methods for regularization of ill-posed problems. Math. Comput. Simul. 81, 1795–1841 (2011)

    Article  MathSciNet  Google Scholar 

  8. Courant, R., Friedrichs, K., Lewy, H.: Über die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann. 100, 32–74 (1928)

    Article  MathSciNet  Google Scholar 

  9. Courant, R., Friedrichs, K., Lewy, H.: On partial difference equations of mathematical physics. IBM J. Res. Dev. 11, 215–234 (1967). Translated from German by Phyllis Fox

    Article  MathSciNet  Google Scholar 

  10. Cui, L., Abousleiman, Y.: Time-dependent poromechanical response of saturated cylinders. J. Eng. Mech. 127, 391–398 (2001)

    Article  Google Scholar 

  11. Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs (1964)

    Google Scholar 

  12. Golub, G.H., Reinsch, C.: Singular value decomposition and least squares solutions. Numer. Math. 14, 403–420 (1970)

    Article  MathSciNet  Google Scholar 

  13. Hon, Y.C., Li, M.: A discrepancy principle for the source points location in using the MFS for solving the BHCP. Int. J. Comput. Method. 6, 181–197 (2009)

    Article  MathSciNet  Google Scholar 

  14. Johansson, B.T., Lesnic, D., Reeve, T.: A method of fundamental solutions for two-dimensional heat conduction. Int. J. Comput. Math. 88, 1697–1713 (2011)

    Article  MathSciNet  Google Scholar 

  15. Kincaid, D., Cheney, W.: Numerical Analysis – Mathematics of Scientific Computing. Brooks/Cole, Pacific Grove (1991)

    Google Scholar 

  16. Kurashige, M., Sato, K., Imai, K.: Mandel and Cryer problems of fluid-saturated foam with negative Poisson’s ratio. Acta Mech. 175, 25–43 (2005)

    Article  Google Scholar 

  17. LeVeque, R.J.: Lectures in mathematics, ETH Zürich. In: O.E. Lanford (ed.) Numerical Methods for Conversation Laws, 2nd edn. Birkhäuser, Basel (1992)

    Chapter  Google Scholar 

  18. Mandel, J.: Consolidation de Sols (Étude Mathématique). Géotechnique 3, 287–299 (1953)

    Article  Google Scholar 

  19. Mathon, R., Johnston, R.L.: The approximate solution of elliptic boundary-value problems by fundamental solutions. SIAM J. Numer. Anal. 14, 638–650 (1977)

    Article  MathSciNet  Google Scholar 

  20. Matlab: version R2013a. The MathWorks (2013)

    Google Scholar 

  21. Moler, C.: Cleve’s corner: professsor SVD. The MathWorks News & Notes (2006). Downloaded from http://www.mathworks.de/company/newsletters/articles/professor-svd.html. On 28 Feb 2014

  22. Neumaier, A.: Solving ill-conditioned and singular linear systems: a tutorial on regularization. SIAM Rev. 40, 636–666 (1998)

    Article  MathSciNet  Google Scholar 

  23. Ostermann, I.: Modeling heat transport in deep geothermal systems by radial basis functions. Ph.D. thesis, University of Kaiserslautern, Geomathematics Group (2011)

    Google Scholar 

  24. Ostermann, I.: Three-dimensional modeling of heat transport in deep hydrothermal reservoirs. Int. J. Geomath. 2, 37–68 (2011)

    Article  MathSciNet  Google Scholar 

  25. Phillips, P.J.: Finite element method in linear poroelasticity: theoretical and computational results. Ph.D. thesis, University of Texas, Austin (2005)

    Google Scholar 

  26. Phillips, P.J., Wheeler, M.F.: Overcoming the problem of locking in linear elasticity and poroelasticity: an heuristic approach. Comput. Geosci. 13, 5–12 (2009)

    Article  Google Scholar 

  27. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Fortran Numerical Recipes, 2nd edn. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  28. Schanz, M.: Application of 3D time domain boundary element formulation to wave propagation in poroelastic solids. Eng. Anal. Bound. Elem. 25, 363–376 (2001)

    Article  Google Scholar 

  29. Smyrlis, Y.S.: Applicability and applications of the method of fundamental solutions. Math. Comput. 78, 1399–1434 (2009)

    Article  MathSciNet  Google Scholar 

  30. Smyrlis, Y.S., Karageorghis, A.: Efficient implementation of the MFS: the three scenarios. J. Comput. Appl. Math. 227, 83–92 (2009)

    Article  MathSciNet  Google Scholar 

  31. Smyrlis, Y.S., Karageorghis, A.: The under-determined version of the MFS: taking more sources than collocation points. Appl. Numer. Math. 60, 337–357 (2010)

    Article  MathSciNet  Google Scholar 

  32. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, 2nd edn. Springer, New York (1993). Translated from German by R. Bartels, W. Gautschi, and C. Witzgall

    Google Scholar 

  33. Strang, G.: Linear Algebra and Its Applications. Brooks/Cole, Toronto (1988)

    Google Scholar 

  34. Stynes, M.: Steady-state convection-diffusion problems. Acta Numer. 14, 445–508 (2005)

    Article  MathSciNet  Google Scholar 

  35. Visual Numerics (ed.): IMSL User Manual. Rogue Wave Software, Boulder, Colorado (2010)

    Google Scholar 

  36. Wen, P.H., Liu, Y.W.: The fundamental solution of poroelastic plate saturated by fluid and its applications. Int. J. Numer. Anal. Method. Geomech. 34, 689–709 (2010)

    Google Scholar 

  37. Yin, S.: Geomechanics-reservoir modeling by displacement discontinuity-finite element method. Ph.D. thesis, University of Waterloo (2008)

    Google Scholar 

  38. Yin, S., Rothenburg, L., Dusseault, M.B.: 3D coupled displacement discontinuity and finite element analysis of reservoir behavior during production in semi-infinite domain. Transp. Porous Media 65, 425–441 (2006)

    Article  Google Scholar 

  39. Young, D.L., Fan, C.M., Hu, S.P., Atluri, S.N.: The Eulerian-Lagrangian method of fundamental solutions for two-dimensional unsteady Burgers’ equations. Eng. Anal. Bound. Elem. 32, 395–412 (2008)

    Article  Google Scholar 

  40. Young, D.L., Tsai, C.C., Murugesan, K., Fan, C.M., Chen, C.W.: Time-dependent fundamental solutions for homogeneous diffusion problems. Eng. Anal. Bound. Elem. 28, 1463–1473 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Augustin, M.A. (2015). Numerical Results. In: A Method of Fundamental Solutions in Poroelasticity to Model the Stress Field in Geothermal Reservoirs. Lecture Notes in Geosystems Mathematics and Computing. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-17079-4_6

Download citation

Publish with us

Policies and ethics