Skip to main content

Boundary Layer Potentials in Poroelasticity

  • Chapter

Part of the book series: Lecture Notes in Geosystems Mathematics and Computing ((LNGMC))

Abstract

Based on differential equations, integral equations can be formulated. A well-known example is the relation between the Laplace equation and Green’s identities. In this chapter, we will use the same procedure to develop integral equations to the quasistatic equations of poroelasticity. In this process, we also derive the adjoint equations to the quasistatic equations of poroelasticity. In order to obtain boundary integral formulations, it is necessary to calculate fundamental solutions to the quasistatic equations of poroelasticity. For this purpose, we use a solution approach by Biot. The derived fundamental solutions clearly reflect the relations of the quasistatic equations of poroelasticity to the heat equation, the Cauchy-Navier equation of linear elasticity and the system of Stokes’ equations. We show how these fundamental solutions are related to the fundamental solutions of the adjoint equations, which are needed to establish boundary integral formulations, from which the equivalents to single- and double-layer potentials of classical potential theory can be deduced formally.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Augustin, M.: On the role of poroelasticity for modeling of stress fields in geothermal reservoirs. Int. J. Geomath. 3, 67–93 (2012)

    Article  MathSciNet  Google Scholar 

  2. Augustin, M., Bauer, M., Blick, C., Eberle, S., Freeden, W., Gerhards, C., Ilyasov, M., Kahnt, R., Klug, M., Michel, I., Möhringer, S., Neu, T., Nutz, H., I., Punzi, A.: Modeling deep geothermal reservoirs: recent advances and future perspectives. In: W. Freeden, Z. Nashed, T. Sonar (eds.) Handbook of Geomathematics, 2nd edn. Springer, New York (2015). Accepted for publication

    Google Scholar 

  3. Augustin, M., Freeden, W., Gerhards, C., Möhringer, S., Ostermann, I.: Mathematische Methoden in der Geothermie. Math. Semesterber. 59, 1–28 (2012)

    Article  MathSciNet  Google Scholar 

  4. Biot, M.A.: General solutions of the equations of elasticity and consolidation for a porous material. J. Appl. Mech. 78, 91–96 (1956)

    MathSciNet  Google Scholar 

  5. Chen, J.: Time domain fundamental solution to Biot’s complete equations of dynamic poroelasticity. Part I: two-dimensional solution. Int. J. Solid. Struct. 31, 1447–1490 (1994)

    Google Scholar 

  6. Chen, J.: Time domain fundamental solution to Biot’s complete equations of dynamic poroelasticity. Part II: three-dimensional solution. Int. J. Solid. Struct. 31, 169–202 (1994)

    Google Scholar 

  7. Cheng, A.H.D., Detournay, E.: On singular integral equations and fundamental solutions of poroelasticity. Int. J. Solid. Struct. 35, 4521–4555 (1998)

    Article  MathSciNet  Google Scholar 

  8. Costabel, M.: Boundary integral operators for the heat equation. Integral Equ. Operat. Theory 13, 498–552 (1990)

    Article  MathSciNet  Google Scholar 

  9. Costabel, M.: Time-dependent problems with the boundary integral equation method. In: E. Stein, R. de Borst, T.J.R. Hughes (eds.) Encyclopedia of Computational Mechanics, chap. 25. Wiley, Chichester (2004)

    Google Scholar 

  10. Detournay, E., Cheng, A.H.D.: Fundamentals of poroelasticity. In: C. Fairhurst (ed.) Comprehensive Rock Engineering: Principles, Practice and Projects. Analysis and Design Method, vol. II, chap. 5, pp. 113–171. Pergamon Press, Oxford (1993)

    Google Scholar 

  11. Ehrenpreis, L.: On the theory of kernels of Schwartz. Proc. Am. Math. Soc. 7, 713–718 (1955)

    Article  MathSciNet  Google Scholar 

  12. Freeden, W., Michel, V.: Multiscale Potential Theory with Applications to Geoscience. Applied and Numerical Harmonic Analysis. Birkhäuser, Boston (2004)

    Book  Google Scholar 

  13. Friedman, A.: Partial Differential Equations of Parabolic Type. Prentice-Hall, Englewood Cliffs (1964)

    Google Scholar 

  14. Hazewinkel, M. (ed.): Encyclopedia of Mathematics. Kluwer Academic, Dordrecht (2002)

    Google Scholar 

  15. Ionescu-Casimir, V.: Problem of linear coupled thermoelasticity. I. Theorems on reciprocity for the dynamic problem of coupled thermoelasticity. Bull. Acad. Pol. Sci., Sér. Sci. Tech. 12, 473–488 (1964)

    Google Scholar 

  16. Kaynia, A.M., Banerjee, P.K.: Fundamental solutions of Biot’s equations of dynamic poroelasticity. Int. J. Eng. Sci. 31, 817–830 (1993)

    Article  Google Scholar 

  17. Malgrange, B.: Éxistence et Approximation des Solutions des Équations aus Dérivées Partielles et des Équations de Convolution. Ann. Inst. Fourier 6, 271–355 (1956)

    Article  MathSciNet  Google Scholar 

  18. Manolis, G.D., Beskos, D.E.: Integral formulation and fundamental solutions of dynamic poroelasticity and thermoelasticity. Acta Mech. 76, 89–104 (1989)

    Article  Google Scholar 

  19. Marsden, J.E., Hughes, T.J.R.: Mathematical Foundations of Elasticity. Dover, Mineola (1994)

    Google Scholar 

  20. Mayer, C.: A wavelet approach to the Stokes problem. Habilitation Thesis, University of Kaiserslautern, Geomathematics Group (2007)

    Google Scholar 

  21. Mayer, C., Freeden, W.: Stokes problem, layer potentials and regularizations, multiscale applications. In: W. Freeden, Z. Nashed, T. Sonar (eds.) Handbook of Geomathematics, 2nd edn. Springer, New York (2015). Accepted for publication

    Google Scholar 

  22. McLean, W.: Strongly Elliptic Systems and Boundary Integral Equations. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  23. Nowacki, W.: Thermoelasticity. Aeronautics and Astronautics. Pergamon Press, Oxford (1986)

    Google Scholar 

  24. Pan, E.: Green’s functions in layered poro-elastic half-spaces. Int. J. Numer. Anal. Method. Geomech. 23, 1631–1653 (1999)

    Article  Google Scholar 

  25. Predeleanu, M.: Reciprocal theorem in the consolidation theory of porous media. An. Univ. Bucur. Ser. Ştiinţ. Nat. Mat.-Mec. 17, 75–79 (1968)

    MathSciNet  Google Scholar 

  26. Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Direct Laplace Transforms. Integrals and Series, vol. 4. Gordeon and Breach Science Publishers, Amsterdam (1992)

    Google Scholar 

  27. Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Inverse Laplace Transforms. Integrals and Series, vol. 5. Gordeon and Breach Science Publishers, Amsterdam (1992)

    Google Scholar 

  28. Rudin, W.: Functional Analysis. McGraw-Hill, New York (1973)

    Google Scholar 

  29. Schanz, M., Pryl, D.: Dynamic fundamental solutions for compressible and incompressible modeled poroelastic continua. Int. J. Solid. Struct. 41, 4047–4073 (2004)

    Article  Google Scholar 

  30. Widder, D.: The Laplace Transform. Princeton University Press, Princeton (1941)

    Google Scholar 

  31. Wiebe, T., Antes, H.: A time domain integral formulation of dynamic poroelasticity. Acta Mech. 90, 125–137 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Augustin, M.A. (2015). Boundary Layer Potentials in Poroelasticity. In: A Method of Fundamental Solutions in Poroelasticity to Model the Stress Field in Geothermal Reservoirs. Lecture Notes in Geosystems Mathematics and Computing. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-17079-4_4

Download citation

Publish with us

Policies and ethics