Skip to main content

Exercise and Myocardial Remodeling in Animal Models with Hypertension

  • Chapter
  • 1761 Accesses

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

Abstract

Hypertension has significant effects on myocardial structure and function. When the heart is faced with a chronic pressure overload, it remodels in order to normalize myocardial wall stress. In normalizing wall stress, concentric, pathological left ventricular hypertrophy is induced. Myocardial remodeling subsequently results in shifts in myocardial metabolism and humoral/intracellular signaling which can impair cardiac function over time. Hence, hypertension is often precursory to heart failure. Exercise and other lifestyle modifications are encouraged for patients with hypertension, and preclinical animal models of hypertension are often used to isolate mechanisms by which exercise training impacts cardiac structure and function. Aerobic exercise training is more efficacious in attenuating blood pressure in young hypertensive animals relative to older animals. However despite the general reduction in hemodynamic burden with aerobic exercise training, training does not exhibit a clear anti-hypertrophic effect in animals with established hypertension. In fact, more prominent cardiac hypertrophy with variable functional performance has been reported in trained, hypertensive animal hearts. Hence, the purpose of this chapter is to cover how exercise impacts cardiac remodeling and functional phenotypes in animal models of hypertension.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

AHA:

American Heart Association

AKT:

Protein kinase B

BP:

Blood pressure

Ca2+ :

Calcium

cAMP:

Adenosine monophosphate

c-Kit+:

Stem cell marker

DNA:

Deoxyribonucleic acid

GRK2:

G protein receptor kinase 2

HHD:

Human hypertensive heart disease

Ki67:

Proliferation marker

LV:

Left ventricle

Na+ :

Sodium

NFAT:

Nuclear factor of activated T cells

PI3 Kinase:

Phosphoinositide 3-kinase

PKA:

Protein kinase A activation

SBP:

Systolic blood pressure

SERCA2A:

Sarcoplasmic reticulum Ca2+ ATPase

SHHR:

Spontaneously hypertensive heart failure rat

SHR:

Spontaneously hypertensive rat

TAC:

Transverse aortic constriction

References

  1. Schlüter K-D, Schreckenberg R, da Costa Rebelo RM. Interaction between exercise and hypertension in spontaneously hypertensive rats: a meta-analysis of experimental studies. Hypertens Res. 2010;33:1155–61.

    Article  PubMed  Google Scholar 

  2. MacDonnell SM, Kubo H, Crabbe DL, et al. Improved myocardial β-adrenergic responsiveness and signaling with exercise training in hypertension. Circulation. 2005;111:3264–72.

    Article  Google Scholar 

  3. Garciarena CD, Pinilla OA, Nolly MB, et al. Endurance training in the spontaneously hypertensive rat: conversion of pathological into physiological cardiac hypertrophy. Hypertension. 2009;53:708–14.

    Article  CAS  PubMed  Google Scholar 

  4. Huang CY, Yang AL, Lin YM, et al. Anti-apoptotic and pro-survival effects of exercise training on hypertensive hearts. J Appl Physiol. 2012;112:883–91.

    Article  CAS  PubMed  Google Scholar 

  5. Kolwicz SC, MacDonnell SM, Renna BF, et al. Left ventricular remodeling with exercise in hypertension. Am J Physiol Heart Circ Physiol. 2009;297:H1361–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Scheuer J, Malhotra A, Hirsch C, et al. Physiologic cardiac hypertrophy corrects contractile protein abnormalities associated with pathologic hypertrophy in rats. J Clin Invest. 1982;70:1300–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kolwicz SC, Kubo H, MacDonnell SM, et al. Effects of forskolin on inotropic performance and phospholamban phosphorylation in exercise-trained hypertensive myocardium. J Appl Physiol. 2007;102:628–33.

    Article  CAS  PubMed  Google Scholar 

  8. Libonati JR, Sabri A, Xiao C, et al. Exercise training improves systolic function in hypertensive myocardium. J Appl Physiol. 2011;111:1637–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Renna BF, Kubo H, MacDonnell SM, et al. Enhanced acidotic myocardial Ca2+ responsiveness with training in hypertension. Med Sci Sports Exerc. 2006;38:847–55.

    Article  CAS  PubMed  Google Scholar 

  10. Bing OH, Brooks WW, Robinson KG, et al. The spontaneously hypertensive rat as a model of the transition from compensated left ventricular hypertrophy to failure. J Mol Cell Cardiol. 1995;27:383–96.

    Article  CAS  PubMed  Google Scholar 

  11. Bertagnolli M, Campos C, Schenkel PC. Baroreflex sensitivity improvement is associated with decreased oxidative stress in trained spontaneously hypertensive rats. J Hypertens. 2006;24:2437–43.

    Article  CAS  PubMed  Google Scholar 

  12. Graham DA, Rush JWE. Exercise training improves aortic endothelium-dependent vasorelaxation and determinants of nitric oxide bioavailability in spontaneously hypertensive rats. J Appl Physiol. 2004;96:2088–96.

    Article  CAS  PubMed  Google Scholar 

  13. Houser SR, Margulies KB, Murphy AM, et al. American Heart Association Council on Basic Cardiovascular Sciences, Council on Clinical Cardiology, and Council on Functional Genomics and Translational Biology. Animal models of heart failure: a scientific statement from the American Heart Association. Circ Res. 2012;111:131–50.

    Article  CAS  PubMed  Google Scholar 

  14. Conrad CH, Brooks WW, Hayes JA, et al. Myocardial fibrosis and stiffness with hypertrophy and heart failure in the spontaneously hypertensive rat. Circulation. 1995;91:161–70.

    Article  CAS  PubMed  Google Scholar 

  15. DiCarlo SE, Collins HL, Rodenbaugh DW, et al. Daily exercise reduces measures of heart rate and blood pressure variability in hypertensive rats. Clin Exp Hypertens. 2002;24:221–34.

    Article  CAS  PubMed  Google Scholar 

  16. Fregly MJ. Effect of an exercise regimen on development of hypertension in rats. J Appl Physiol. 1984;56:381–7.

    CAS  PubMed  Google Scholar 

  17. Krieger EM, Brum PC, Negrao CE. State-of-the-art lecture: influence of exercise training on neurogenic control of blood pressure in spontaneously hypertensive rats. Hypertension. 1999;34(4 Pt 2):720–3.

    Article  CAS  PubMed  Google Scholar 

  18. Molkentin JD. Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovasc Res. 2004;63:467–75.

    Article  CAS  PubMed  Google Scholar 

  19. Molkentin JD, Lu JR, Antos CL, et al. A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell. 1998;93:215–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. De Windt LJ, Lim HW, Bueno OF, et al. Targeted inhibition of calcineurin attenuates cardiac hypertrophy in vivo. Proc Natl Acad Sci U S A. 2001;98:3322–7.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hill JA, Karimi M, Kutschke W, et al. Cardiac hypertrophy is not a required compensatory response to short-term pressure overload. Circulation. 2000;101:2863–9.

    Article  CAS  PubMed  Google Scholar 

  22. McMullen JR, Shioi T, Huang WY, et al. The insulin-like growth factor 1 receptor induces physiological heart growth via the phosphoinositide 3-kinase(p110alpha) pathway. J Biol Chem. 2004;279:4782–93.

    Article  CAS  PubMed  Google Scholar 

  23. McMullen JR, Shioi T, Zhang L, et al. Phosphoinositide 3-kinase(p110alpha) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proc Natl Acad Sci U S A. 2003;100:12355–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in three Akts. Genes Dev. 1999;13:2905–27.

    Article  CAS  PubMed  Google Scholar 

  25. Cardone MH, Roy N, Stennicke HR, et al. Regulation of cell death protease caspase-9 by phosphorylation. Science. 1998;282:1318–21.

    Article  CAS  PubMed  Google Scholar 

  26. van Berlo JH, Kanisicak O, Maillet M, et al. c-kit+ cells minimally contribute cardiomyocytes to the heart. Nature. 2014;15:337–41.

    Article  Google Scholar 

  27. Renna BF, MacDonnell SM, Reger PO, et al. Relative systolic dysfunction in female spontaneously hypertensive rat myocardium. J Appl Physiol. 2007;10:353–8.

    Article  Google Scholar 

  28. Lee YI, Cho JY, Kim MH, et al. Effects of exercise on pathological cardiac hypertrophy related gene expression and apoptosis. Eur J Appl Physiol. 2006;97:216–24.

    Article  CAS  PubMed  Google Scholar 

  29. Lajoie C, Calderone A, Béliveau L. Exercise training enhanced the expression of myocardial proteins related to cell protection in spontaneously hypertensive rats. Pflugers Arch Eur J Physiol. 2004;449:26–32.

    Article  CAS  Google Scholar 

  30. Huang CC, Lin TJ, Chen CC, et al. Endurance training accelerates exhaustive exercise-induced impairment of left ventricular function and myocardial apoptosis in rats. Eur J Appl Physiol. 2009;107:697–706.

    Article  CAS  PubMed  Google Scholar 

  31. Amaral SL, Zorn TMT, Michelini LC. Exercise training normalizes wall-to-lumen ratio of the gracilis muscle arterioles and reduces pressure in spontaneously hypertensive rats. J Hypertens. 2000;18:1563–72.

    Article  CAS  PubMed  Google Scholar 

  32. Chicco AJ, McCune SA, Emter CA, et al. Low-intensity exercise training delays heart failure and improves survival in female hypertensive heart failure rats. Hypertension. 2008;51:1096–102.

    Article  CAS  PubMed  Google Scholar 

  33. Kolwicz SC, MacDonnell SM, Kendrick ZV, et al. Voluntary wheel running protects against pacing-induced dysfunction in the spontaneous hypertensive rat. Clin Exp Hypertens. 2008;30:565–73.

    Article  PubMed  Google Scholar 

  34. Konhilas JP, Watson PA, Maass A, et al. Exercise can prevent and reverse the severity of hypertrophic cardiomyopathy. Circ Res. 2006;98:540–8.

    Article  CAS  PubMed  Google Scholar 

  35. Libonati JR, Gaughan JP. Low-intensity exercise training improves survival in Dahl salt hypertension. Med Sci Sports Exerc. 2006;38:856–8.

    Article  PubMed  Google Scholar 

  36. Marshall KD, Muller BN, Krenz M, et al. Heart failure with preserved ejection fraction: chronic low-intensity interval exercise training preserves myocardial O2 balance and diastolic function. J Appl Physiol. 2012;114:131–47.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zanettini R, Bettega D, Agostoni O, et al. Exercise training in mild hypertension: effects on blood pressure, left ventricular mass and coagulation factor VII and fibrinogen. Cardiology. 1997;88:468–73.

    Article  CAS  PubMed  Google Scholar 

  38. Rossoni LV, Oliveira RA, Caffaro RR, et al. Cardiac benefits of exercise training in aging spontaneously hypertensive rats. J Hypertens. 2011;29:2349–58.

    Article  CAS  PubMed  Google Scholar 

  39. Felix JVC, Michelini LC. Training-induced pressure fall in spontaneously hypertensive rats is associated with reduced angiotensinogen mRNA expression within the nucleus tractus solitarii. Hypertension. 2007;50:780–5.

    Article  CAS  PubMed  Google Scholar 

  40. Collins HL, Loka AM, DiCarlo SE. Daily exercise-induced cardioprotection is associated with changes in calcium regulatory proteins in hypertensive rats. Am J Physiol. 2005;288:H532–40.

    CAS  Google Scholar 

  41. Emter CA, McCune SA, Sparagna GC. Low-intensity exercise training delays onset of decompensated heart failure in spontaneously hypertensive rats. Am J Physiol. 2005;289:H2030–8.

    CAS  Google Scholar 

  42. Beatty JA, Kramer JM, Plowey ED. Physical exercise decreases neuronal activity in the posterior hypothalamic area of spontaneously hypertensive rats. J Appl Physiol. 2005;98:572–8.

    Article  PubMed  Google Scholar 

  43. Zhang J, Ren CX, Qi YF. Exercise training promotes expression of apelin and APJ of cardiovascular tissues in spontaneously hypertensive rats. Life Sci. 2006;79:1153–9.

    Article  CAS  PubMed  Google Scholar 

  44. Horta PP, de Carvalho JJ, Mandarim-de-Lacerda CA. Exercise training attenuates blood pressure elevation and adverse remodelling in the aorta of spontaneously hypertensive rats. Life Sci. 2005;77:3336–43.

    Article  CAS  PubMed  Google Scholar 

  45. Melo RM, Martinho Jr E, Michelini LC. Training-induced, pressure-lowering effect in SHR. Hypertension. 2003;42:851–7.

    Article  CAS  PubMed  Google Scholar 

  46. Martins AS, Crescenzi A, Stern JE. Hypertension and exercise training differentially affect oxytocin and oxytocin receptor expression in the brain. Hypertension. 2005;46:1004–9.

    Article  CAS  PubMed  Google Scholar 

  47. Amaral SL, Sanchez LS, Chang AJBA, et al. Time course of training-induced microcirculatory changes and of VEGF expression in skeletal muscles of spontaneously hypertensive female rats. Braz J Med Biol Res. 2008;41:424–31.

    Article  CAS  PubMed  Google Scholar 

  48. Zioada AM, Hassan MO, Tahlikar KI, et al. Long-term exercise training and angiotensin-converting enzyme inhibition differentially enhance myocardial capillarization in the spontaneously hypertensive rat. J Hypertens. 2005;23:1233–40.

    Article  Google Scholar 

  49. Miyachi M, Yazawa H, Furukawa M, et al. Exercise training alters left ventricular geometry and attenuates heart failure in Dahl salt-sensitive hypertensive rats. Hypertension. 2009;53:701–7.

    Article  CAS  PubMed  Google Scholar 

  50. Huang ZM, Gold JI, Koch WJ. G protein-coupled receptor kinases in normal and failing myocardium. Front Biosci. 2011;16:3047–60.

    Article  Google Scholar 

  51. Castellano M, Bohm M. The cardiac beta-adrenoceptor-mediated signaling pathway and its alterations in hypertensive heart disease. Hypertension. 1997;29:715–22.

    Article  CAS  PubMed  Google Scholar 

  52. Atkins FL, Bing OH, DiMauro PG, et al. Modulation of left and right ventricular beta-adrenergic receptors from spontaneously hypertensive rats with left ventricular hypertrophy and failure. Hypertension. 1995;26:78–82.

    Article  CAS  PubMed  Google Scholar 

  53. Choi DJ, Koch WJ, Hunter JJ. Mechanism of beta-adrenergic receptor desensitization in cardiac hypertrophy is increased beta-adrenergic receptor kinase. J Biol Chem. 1997;272:17223–9.

    Article  CAS  PubMed  Google Scholar 

  54. MacDonnell SM, Kubo H, Harris DM, et al. Calcineurin inhibition normalizes beta-adrenergic responsiveness in the spontaneously hypertensive rat. Am J Physiol Heart Circ Physiol. 2007;293:H3122–9.

    Article  CAS  PubMed  Google Scholar 

  55. Santana LF, Chase EG, Votaw VS, et al. Functional coupling of calcineurin and protein kinase A in mouse ventricular myocytes. J Physiol. 2002;544(Pt 1):57–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Limas C, Limas CJ. Reduced number of beta-adrenergic receptors in the myocardium of spontaneously hypertensive rats. Biochem Biophys Res Commun. 1978;83:710–71.

    Article  CAS  PubMed  Google Scholar 

  57. Gava NS, Veras-Silva AS, Negrao CE, et al. Low-intensity exercise training attenuates cardiac beta-adrenergic tone during exercise in spontaneously hypertensive rats. Hypertension. 1995;26(6 Pt 2):1129–33.

    Article  CAS  PubMed  Google Scholar 

  58. Emter CA, Baines CP. Low-intensity aerobic interval training attenuates pathological left ventricular remodeling and mitochondrial dysfunction in aortic-banded miniature swine. Am J Physiol Heart Circ Physiol. 2010;299:H1348–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Reger PO, Barbe MF, Amin M, et al. Myocardial hypoperfusion/reperfusion tolerance with exercise training in hypertension. J Appl Physiol. 2006;100:541–7.

    Article  CAS  PubMed  Google Scholar 

  60. Reger PO, Kolwicz SC, Libonati JR. Acute exercise exacerbates ischemia-induced diastolic rigor in hypertensive myocardium. Springer Plus. 2012;1:46.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Schultz RL, Swallow JG, Waters RP, et al. Effects of excessive long-term exercise on cardiac function and myocyte remodeling in hypertensive heart failure rats. Hypertension. 2007;50:410–6.

    Article  CAS  PubMed  Google Scholar 

  62. da Costa Rebelo RM, Schreckenberg R, Schlüter KD. Adverse cardiac remodelling in spontaneously hypertensive rats: acceleration by high aerobic exercise intensity. J Physiol. 2012;590:5389–400.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Libonati JR. Is exercise really deleterious for the hypertensive heart? J Physiol. 2013;591(Pt 8):2225–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph R. Libonati Ph.D., F.A.H.A. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Libonati, J.R. (2015). Exercise and Myocardial Remodeling in Animal Models with Hypertension. In: Pescatello, L. (eds) Effects of Exercise on Hypertension. Molecular and Translational Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-17076-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17076-3_11

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-17075-6

  • Online ISBN: 978-3-319-17076-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics