Skip to main content

The Effects of Aerobic Exercise on Hypertension: Current Consensus and Emerging Research

  • Chapter

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

Abstract

Hypertension is one of the most important cardiovascular disease risk factors due to its high prevalence and significant medical costs. The Eighth Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure and the American College of Sports Medicine recommend lifestyle modifications such as habitual physical activity as initial therapy to prevent, treat, and control hypertension. The purposes of this chapter are to: (1) overview the current consensus on the effects of acute (immediate, short-term, or postexercise hypotension) and chronic (long-term or training) aerobic exercise on blood pressure among individuals with hypertension; (2) discuss new and emerging research on the effects of acute and chronic aerobic exercise on blood pressure that has the potential to alter the way in which aerobic exercise is prescribed to prevent, treat, and control hypertension in the future; and (3) present exercise prescription recommendations and special considerations for individuals with hypertension that consider this new and emerging research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

1-RM:

One repetition maximum

ACSM:

American College of Sports Medicine

BP:

Blood pressure

DBP:

Diastolic blood pressure

Ex Rx :

Exercise prescription

FITT:

Frequency, Intensity, Time, and Type

JNC 8:

The Eighth Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure

HR:

Heart rate

HIIT:

High intensity interval training

PEH:

Postexercise hypotension

RPE:

Rating of perceived exertion

SBP:

Systolic blood pressure

US:

United States

VO2max :

Maximal oxygen consumption

VO2peak :

Peak oxygen consumption

VO2reserve :

Oxygen consumption reserve

References

  1. Mozaffarian D, Benjamin EJ, Go AS, et al. Executive summary: heart disease and stroke statistics-2015 update: a report from the American heart association. Circulation. 2015;131(4):434–41.

    Google Scholar 

  2. Heidenreich PA, Trogdon JG, Khavjou OA, et al. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation. 2011;123:933–44.

    Article  PubMed  Google Scholar 

  3. Chobanian AV, Bakris GL, Black HR, et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension. 2003;42:1206–52.

    Article  CAS  PubMed  Google Scholar 

  4. Fields LE, Burt VL, Cutler JA, Hughes J, Roccella EJ, Sorlie P. The burden of adult hypertension in the United States 1999 to 2000: a rising tide. Hypertension. 2004;44:398–404.

    Article  CAS  PubMed  Google Scholar 

  5. Wang Y, Wang QJ. The prevalence of prehypertension and hypertension among US adults according to the new joint national committee guidelines: new challenges of the old problem. Arch Intern Med. 2004;164:2126–34.

    Article  PubMed  Google Scholar 

  6. Staessen JA, Wang JG, Birkenhager WH. Outcome beyond blood pressure control? Eur Heart J. 2003;24:504–14.

    Article  PubMed  Google Scholar 

  7. Nwankwo T, Yoon SS, Burt V, Gu Q. Hypertension among adults in the United States: National Health and Nutrition Examination Survey, 2011–2012. NCHS Data Brief. 2013;133:1–8.

    PubMed  Google Scholar 

  8. James PA, Oparil S, Carter BL, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311:507–20.

    Article  CAS  PubMed  Google Scholar 

  9. Pescatello LS, Franklin BA, Fagard R, et al. American College of Sports Medicine position stand. Exercise and hypertension. Med Sci Sports Exerc. 2004;36:533–53.

    Article  PubMed  Google Scholar 

  10. Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults—The Evidence Report. National Institutes of Health. Obes Res 1998;6 Suppl 2:51S–209S.

    Google Scholar 

  11. Johnson BT, Macdonald HV, Bruneau Jr ML, et al. Methodological quality of meta-analyses on the blood pressure response to exercise: a review. J Hypertens. 2014;32:706–23.

    Article  CAS  PubMed  Google Scholar 

  12. Brandao Rondon MU, Alves MJ, Braga AM, et al. Postexercise blood pressure reduction in elderly hypertensive patients. J Am Coll Cardiol. 2002;39:676–82.

    Article  PubMed  Google Scholar 

  13. Kenney MJ, Seals DR. Postexercise hypotension. Key features, mechanisms, and clinical significance. Hypertension. 1993;22:653–64.

    Article  CAS  PubMed  Google Scholar 

  14. Pescatello LS. Exercise and hypertension: recent advances in exercise prescription. Curr Hypertens Rep. 2005;7:281–6.

    Article  PubMed  Google Scholar 

  15. Fitzgerald W. Labile hypertension and jogging: new diagnostic tool or spurious discovery? Br Med J (Clin Res Ed). 1981;282:542–4.

    Article  CAS  Google Scholar 

  16. Haskell WL. J.B. Wolffe Memorial Lecture. Health consequences of physical activity: understanding and challenges regarding dose-response. Med Sci Sports Exerc. 1994;26:649–60.

    Article  CAS  PubMed  Google Scholar 

  17. Hecksteden A, Grutters T, Meyer T. Association between postexercise hypotension and long-term training-induced blood pressure reduction: a pilot study. Clin J Sport Med. 2013;23:58–63.

    Article  PubMed  Google Scholar 

  18. Liu S, Goodman J, Nolan R, Lacombe S, Thomas SG. Blood pressure responses to acute and chronic exercise are related in prehypertension. Med Sci Sports Exerc. 2012;44:1644–52.

    Article  PubMed  Google Scholar 

  19. Pescatello LS, Kulikowich JM. The aftereffects of dynamic exercise on ambulatory blood pressure. Med Sci Sports Exerc. 2001;33:1855–61.

    Article  CAS  PubMed  Google Scholar 

  20. Wilcox RG, Bennett T, Brown AM, Macdonald IA. Is exercise good for high blood pressure? Br Med J (Clin Res Ed). 1982;285:767–9.

    Article  CAS  Google Scholar 

  21. Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med. 2009;151:W65–94.

    Article  PubMed  Google Scholar 

  22. Johnson BT, Eagly AH. Meta-analysis of social-personality psychological research. In: Reis T, Judd CM, editors. Handbook of research methods in social and personality psychology. 2nd ed. London: Cambridge University Press; 2014.

    Google Scholar 

  23. Bennett T, Wilcox RG, Macdonald IA. Post-exercise reduction of blood pressure in hypertensive men is not due to acute impairment of baroreflex function. Clin Sci (Lond). 1984;67:97–103.

    Article  CAS  Google Scholar 

  24. Cleroux J, Kouame N, Nadeau A, Coulombe D, Lacourciere Y. Aftereffects of exercise on regional and systemic hemodynamics in hypertension. Hypertension. 1992;19:183–91.

    Article  CAS  PubMed  Google Scholar 

  25. Floras JS, Sinkey CA, Aylward PE, Seals DR, Thoren PN, Mark AL. Postexercise hypotension and sympathoinhibition in borderline hypertensive men. Hypertension. 1989;14:28–35.

    Article  CAS  PubMed  Google Scholar 

  26. Floras JS, Hara K. Sympathoneural and haemodynamic characteristics of young subjects with mild essential hypertension. J Hypertens. 1993;11:647–55.

    Article  CAS  PubMed  Google Scholar 

  27. Hagberg JM, Montain SJ, Martin III WH. Blood pressure and hemodynamic responses after exercise in older hypertensives. J Appl Physiol. 1987;63:270–6.

    CAS  PubMed  Google Scholar 

  28. Kraul J, Chrastek J, Adamirova J. The hypotensive effect of physical activity. In: Rabb W, editor. Prevention of ischemic heart disease: principles and practice. Springfield: Charles C Thomas; 1966.

    Google Scholar 

  29. MacDonald JR, Hogben CD, Tarnopolsky MA, MacDougall JD. Post exercise hypotension is sustained during subsequent bouts of mild exercise and simulated activities of daily living. J Hum Hypertens. 2001;15:567–71.

    Article  CAS  PubMed  Google Scholar 

  30. Paulev PE, Jordal R, Kristensen O, Ladefoged J. Therapeutic effect of exercise on hypertension. Eur J Appl Physiol Occup Physiol. 1984;53:180–5.

    Article  CAS  PubMed  Google Scholar 

  31. Pescatello LS, Fargo AE, Leach Jr CN, Scherzer HH. Short-term effect of dynamic exercise on arterial blood pressure. Circulation. 1991;83:1557–61.

    Article  CAS  PubMed  Google Scholar 

  32. Pescatello LS, Guidry MA, Blanchard BE, et al. Exercise intensity alters postexercise hypotension. J Hypertens. 2004;22:1881–8.

    Article  CAS  PubMed  Google Scholar 

  33. Quinn TJ. Twenty-four hour, ambulatory blood pressure responses following acute exercise: impact of exercise intensity. J Hum Hypertens. 2000;14:547–53.

    Article  CAS  PubMed  Google Scholar 

  34. Taylor-Tolbert NS, Dengel DR, Brown MD, et al. Ambulatory blood pressure after acute exercise in older men with essential hypertension. Am J Hypertens. 2000;13:44–51.

    Article  CAS  PubMed  Google Scholar 

  35. Wallace JP, Bogle PG, King BA, Krasnoff JB, Jastremski CA. The magnitude and duration of ambulatory blood pressure reduction following acute exercise. J Hum Hypertens. 1999;13:361–6.

    Article  CAS  PubMed  Google Scholar 

  36. Bhammar DM, Angadi SS, Gaesser GA. Effects of fractionized and continuous exercise on 24-h ambulatory blood pressure. Med Sci Sports Exerc. 2012;44:2270–6.

    Article  PubMed  Google Scholar 

  37. Ciolac EG, Guimaraes GV, D'Avila VM, Bortolotto LA, Doria EL, Bocchi EA. Acute aerobic exercise reduces 24-h ambulatory blood pressure levels in long-term-treated hypertensive patients. Clinics (Sao Paulo). 2008;63:753–8.

    Article  Google Scholar 

  38. Ciolac EG, Guimaraes GV, D Avila VM, Bortolotto LA, Doria EL, Bocchi EA. Acute effects of continuous and interval aerobic exercise on 24-h ambulatory blood pressure in long-term treated hypertensive patients. Int J Cardiol. 2009;133:381–7.

    Article  PubMed  Google Scholar 

  39. Ciolac EG. High-intensity interval training and hypertension: maximizing the benefits of exercise? Am J Cardiovasc Dis. 2012;2:102–10.

    PubMed  PubMed Central  Google Scholar 

  40. Guidry MA, Blanchard BE, Thompson PD, et al. The influence of short and long duration on the blood pressure response to an acute bout of dynamic exercise. Am Heart J 2006;151:1322.e5–12.

    Google Scholar 

  41. Eicher JD, Maresh CM, Tsongalis GJ, Thompson PD, Pescatello LS. The additive blood pressure lowering effects of exercise intensity on post-exercise hypotension. Am Heart J. 2010;160:513–20.

    Article  PubMed  Google Scholar 

  42. Angadi SS, Weltman A, Watson-Winfield D, et al. Effect of fractionized vs continuous, single-session exercise on blood pressure in adults. J Hum Hypertens. 2010;24:300–2.

    Article  CAS  PubMed  Google Scholar 

  43. Jones H, Taylor CE, Lewis NC, George K, Atkinson G. Post-exercise blood pressure reduction is greater following intermittent than continuous exercise and is influenced less by diurnal variation. Chronobiol Int. 2009;26:293–306.

    Article  PubMed  Google Scholar 

  44. Miyashita M, Burns SF, Stensel DJ. Accumulating short bouts of running reduces resting blood pressure in young normotensive/pre-hypertensive men. J Sports Sci. 2011;29:1473–82.

    Article  PubMed  Google Scholar 

  45. Lacombe SP, Goodman JM, Spragg CM, Liu S, Thomas SG. Interval and continuous exercise elicit equivalent postexercise hypotension in prehypertensive men, despite differences in regulation. Appl Physiol Nutr Metab. 2011;36:881–91.

    Article  PubMed  Google Scholar 

  46. Padilla J, Wallace JP, Park S. Accumulation of physical activity reduces blood pressure in pre- and hypertension. Med Sci Sports Exerc. 2005;37:1264–75.

    Article  PubMed  Google Scholar 

  47. Park S, Rink L, Wallace J. Accumulation of physical activity: blood pressure reduction between 10-min walking sessions. J Hum Hypertens. 2008;22:475–82.

    Article  CAS  PubMed  Google Scholar 

  48. Park S, Rink LD, Wallace JP. Accumulation of physical activity leads to a greater blood pressure reduction than a single continuous session, in prehypertension. J Hypertens. 2006;24:1761–70.

    Article  CAS  PubMed  Google Scholar 

  49. Fagard RH. Exercise characteristics and the blood pressure response to dynamic physical training. Med Sci Sports Exerc. 2001;33:S484–92; discussion S493–4.

    Article  CAS  PubMed  Google Scholar 

  50. Hagberg JM, Brown MD. Does exercise training play a role in the treatment of essential hypertension? J Cardiovasc Risk. 1995;2:296–302.

    Article  CAS  PubMed  Google Scholar 

  51. Hagberg JM, Park JJ, Brown MD. The role of exercise training in the treatment of hypertension: an update. Sports Med. 2000;30:193–206.

    Article  CAS  PubMed  Google Scholar 

  52. Staessen JA, Gasowski J, Wang JG, et al. Risks of untreated and treated isolated systolic hypertension in the elderly: meta-analysis of outcome trials. Lancet. 2000;355:865–72.

    Article  CAS  PubMed  Google Scholar 

  53. Pescatello LS, Riebe D, Arena R. ACSM’s guidelines for exercise testing and prescription. 9th ed. Baltimore: Lippincott Williams & Wilkins; 2013.

    Google Scholar 

  54. Garber CE, Blissmer B, Deschenes MR, et al. American College of Sports Medicine position stand. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43:1334–59.

    Article  PubMed  Google Scholar 

  55. Swain DP, Franklin BA. Comparison of cardioprotective benefits of vigorous versus moderate intensity aerobic exercise. Am J Cardiol. 2006;97:141–7.

    Article  PubMed  Google Scholar 

  56. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III): final report. Circulation. 2002;106(25):3143–421.

    Google Scholar 

  57. Ash GI, Eicher JD, Pescatello LS. The promises and challenges of the use of genomics in the prescription of exercise for hypertension: the 2013 update. Curr Hypertens Rev. 2013;9:130–47.

    Article  CAS  PubMed  Google Scholar 

  58. Bouchard C, Blair SN, Church TS, et al. Adverse metabolic response to regular exercise: is it a rare or common occurrence? PLoS One. 2012;7:e37887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fagard RH. Physical activity in the prevention and treatment of hypertension in the obese. Med Sci Sports Exerc. 1999;31:S624–30.

    Article  CAS  PubMed  Google Scholar 

  60. Kelley GA, Kelley KA, Tran ZV. Aerobic exercise and resting blood pressure: a meta-analytic review of randomized, controlled trials. Prev Cardiol. 2001;4:73–80.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Cornelissen VA, Fagard RH. Effect of resistance training on resting blood pressure: a meta-analysis of randomized controlled trials. J Hypertens. 2005;23(2):251–9.

    Article  CAS  PubMed  Google Scholar 

  62. Cornelissen VA, Buys R, Smart NA. Endurance exercise beneficially affects ambulatory blood pressure: a systematic review and meta-analysis. J Hypertens. 2013;31:639–48.

    Article  CAS  PubMed  Google Scholar 

  63. Cornelissen VA, Smart NA. Exercise training for blood pressure: a systematic review and meta-analysis. J Am Heart Assoc. 2013;2:e004473.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Whelton SP, Chin A, Xin X, He J. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann Intern Med. 2002;136:493–503.

    Article  PubMed  Google Scholar 

  65. Bouchard C, Rankinen T. Individual differences in response to regular physical activity. Med Sci Sports Exerc. 2001;33:S446–51; discussion S452–3.

    Article  CAS  PubMed  Google Scholar 

  66. Ash GI, Macdonald HV, Pescatello LS. Antihypertensive effects of exercise among those with resistant hypertension. Hypertension. 2013;61:e1.

    Article  CAS  PubMed  Google Scholar 

  67. Thompson PD, Crouse SF, Goodpaster B, Kelley D, Moyna N, Pescatello L. The acute versus the chronic response to exercise. Med Sci Sports Exerc. 2001;33:S438–45; discussion S452–3.

    Article  CAS  PubMed  Google Scholar 

  68. Halliwill JR. Mechanisms and clinical implications of post-exercise hypotension in humans. Exerc Sport Sci Rev. 2001;29:65–70.

    Article  CAS  PubMed  Google Scholar 

  69. Maeda S, Tanabe T, Otsuki T, Sugawara J, Ajisaka R, Matsuda M. Acute exercise increases systemic arterial compliance after 6-month exercise training in older women. Hypertens Res. 2008;31:377–81.

    Article  PubMed  Google Scholar 

  70. Tabara Y, Yuasa T, Oshiumi A, et al. Effect of acute and long-term aerobic exercise on arterial stiffness in the elderly. Hypertens Res. 2007;30:895–902.

    Article  PubMed  Google Scholar 

  71. Beck DT, Martin JS, Casey DP, Braith RW. Exercise training improves endothelial function in resistance arteries of young prehypertensives. J Hum Hypertens. 2014;28:303–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Gibala MJ, Little JP, Macdonald MJ, Hawley JA. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol. 2012;590:1077–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Heydari M, Boutcher YN, Boutcher SH. High-intensity intermittent exercise and cardiovascular and autonomic function. Clin Auton Res. 2013;23:57–65.

    Article  PubMed  Google Scholar 

  74. Kessler HS, Sisson SB, Short KR. The potential for high-intensity interval training to reduce cardiometabolic disease risk. Sports Med. 2012;42:489–509.

    Article  PubMed  Google Scholar 

  75. Molmen-Hansen HE, Stolen T, Tjonna AE, et al. Aerobic interval training reduces blood pressure and improves myocardial function in hypertensive patients. Eur J Prev Cardiol. 2012;19:151–60.

    Article  PubMed  Google Scholar 

  76. Donnelly JE, Blair SN, Jakicic JM, et al. American College of Sports Medicine position stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. Med Sci Sports Exerc. 2009;41:459–71.

    Article  PubMed  Google Scholar 

  77. Borg GA. Perceived exertion. Exerc Sport Sci Rev. 1974;2:131–53.

    Article  CAS  PubMed  Google Scholar 

  78. Borg G, Ljunggren G, Ceci R. The increase of perceived exertion, aches and pain in the legs, heart rate and blood lactate during exercise on a bicycle ergometer. Eur J Appl Physiol Occup Physiol. 1985;54:343–9.

    Article  CAS  PubMed  Google Scholar 

  79. Borg G, Hassmen P, Lagerstrom M. Perceived exertion related to heart rate and blood lactate during arm and leg exercise. Eur J Appl Physiol Occup Physiol. 1987;56:679–85.

    Article  CAS  PubMed  Google Scholar 

  80. Whelton PK, He J, Appel LJ, et al. Primary prevention of hypertension: clinical and public health advisory from The National High Blood Pressure Education Program. JAMA. 2002;288:1882–8.

    Article  PubMed  Google Scholar 

  81. Allen NA, Jacelon CS, Chipkin SR. Feasibility and acceptability of continuous glucose monitoring and accelerometer technology in exercising individuals with type 2 diabetes. J Clin Nurs. 2009;18:373–83.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda S. Pescatello Ph.D., F.A.C.S.M., F.A.H.A. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pescatello, L.S., MacDonald, H.V., Johnson, B.T. (2015). The Effects of Aerobic Exercise on Hypertension: Current Consensus and Emerging Research. In: Pescatello, L. (eds) Effects of Exercise on Hypertension. Molecular and Translational Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-17076-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17076-3_1

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-17075-6

  • Online ISBN: 978-3-319-17076-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics