Skip to main content

Inkjet Printing of Biomolecules for Biorecognition

  • Chapter
  • First Online:
Design of Polymeric Platforms for Selective Biorecognition

Abstract

Inkjet printing technology has become prevalent not only for office document printing, but has also gained a lot of attention in academic research and industrial manufacturing. Inkjet printers with the ability to reproducibly deposit known and small volumes of liquids onto specific user selectable spots on a large variety of substrates in a non-contact manner can be regarded as accurate tools for liquid dispensing. Those are highly important in the fields of chemistry, biology, or life sciences.

After providing a general introduction into the basic principles of inkjet printing, separated sections are devoted to the inkjet deposition of nucleic acids and of proteins. It is shown that inkjet printing technology can handle all relevant biomolecules, provided that ink formulations meet certain requirements defined by the selected droplet ejection system. Balancing inkjet-printability and preservation of biomolecule functionality during the printing process is essential. But the advantages achieved by inkjet printing of biomolecules compared to other deposition techniques have resulted in the development and fabrication of manifold analytical devices utilizing the strengths of biomolecular recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Elmqvist R (1949) Measuring instrument of the recording type. US Patent 2,566,443

    Google Scholar 

  2. Le HP (1998) Progress and trends in ink-jet printing technology. J Imaging Sci Technol 42:49–62

    Google Scholar 

  3. Martin GD, Hoath SD, Hutchings IM (2008) Inkjet printing—the physics of manipulating liquid jets and drops. Journal of Physics: Conference Series 105:012001

    Google Scholar 

  4. Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo EP (2000) High-resolution inkjet printing of all-polymer transistor circuits. Science 290:2123–2126

    Article  Google Scholar 

  5. Teichler A, Perelaer J, Schubert US (2013) Inkjet printing of organic electronics—comparison of deposition techniques and state-of-the-art developments. J Mat Chem C 1:1910–1925

    Article  Google Scholar 

  6. Komuro N, Takaki S, Suzuki K, Citterio D (2013) Inkjet printed (bio)chemical sensing devices. Anal Bioanal Chem 405:5785–5805

    Article  Google Scholar 

  7. Cooley PW, Wallace DB, Antohe BV (2001) Applications of ink-jet printing technology to BioMEMS and microfluidic systems. Proc SPIE 4560:177–188

    Article  Google Scholar 

  8. Castrejon-Pita JR, Baxter WRS, Morgan J, Temple S, Martin GD, Hutchings IM (2013) Future, opportunities and challenges of inkjet technologies. Atomization Spray 23:541–565

    Article  Google Scholar 

  9. Hudd A (2010) Inkjet printing technologies. In: Magdassi S (ed) The chemistry of inkjet inks. World Scientific, Singapore, pp 3–18

    Google Scholar 

  10. Delaney JT, Smith PJ, Schubert US (2009) Inkjet printing of proteins. Soft Matter 5:4866–4877

    Article  Google Scholar 

  11. Setti L, Piana C, Bonazzi S, Ballarin B, Frascaro D, Fraleoni-Morgera A, Giuliani S (2004) Thermal inkjet technology for the microdeposition of biological molecules as a viable route for the realization of biosensors. Anal Lett 37:1559–1570

    Article  Google Scholar 

  12. Tirella A, Vozzi F, De Maria C, Vozzi G, Sandri T, Sassano D, Cognolato L, Ahluwalia A (2011) Substrate stiffness influences high resolution printing of living cells with an ink-jet system. J Biosci Bioeng 112:79–85

    Article  Google Scholar 

  13. Hadimioglu B, Elrod SA, Steinmetz DL, Lim M, Zesch JC, Khuri-Yakub BT, Rawson EG, Quate CF (1992) Acoustic ink printing. In: Ultrasonics Symposium, 1992. Proceedings IEEE 1992, pp 929–935

    Google Scholar 

  14. Weng B, Shepherd RL, Crowley K, Killard AJ, Wallace GG (2010) Printing conducting polymers. Analyst 135:2779–2789

    Article  Google Scholar 

  15. Magdassi S (2010) Ink requirements and formulations guidelines. In: Magdassi S (ed) The chemistry of inkjet inks. World Scientific, Singapore, pp 19–41

    Google Scholar 

  16. Di Risio S, Yan N (2010) Bioactive paper through inkjet printing. J Adhes Sci Technol 24:661–684

    Article  Google Scholar 

  17. De Gans BJ, Duineveld PC, Schubert US (2004) Inkjet printing of polymers: State of the art and future developments. Adv Mater 16:203–213

    Article  Google Scholar 

  18. Monton MRN, Forsberg EM, Brennan JD (2012) Tailoring sol-gel-derived silica materials for optical biosensing. Chem Mater 24:796–811

    Article  Google Scholar 

  19. Sele CW, von Werne T, Friend RH, Sirringhaus H (2005) Lithography-free, self-aligned inkjet printing with sub-hundred-nanometer resolution. Adv Mater 17:997–1001

    Article  Google Scholar 

  20. Hwang SY, Lim G (2000) DNA chip technologies. Biotechnol Bioprocess Eng 5:159–163

    Article  Google Scholar 

  21. Pirrung MC (2002) How to make a DNA chip. Angew Chem Int Edit 41:1267–1289

    Article  Google Scholar 

  22. Barbulovic-Nad I, Lucente M, Yu S, Mingjun Z, Wheeler AR, Bussmann M (2006) Bio-microarray fabrication techniques—A review. Crit Rev Biotechnol 26:237–259

    Article  Google Scholar 

  23. Sassolas A, Leca-Bouvier BD, Blum LJ (2008) DNA biosensors and microarrays. Chem Rev 108:109–139

    Article  Google Scholar 

  24. Meyer R, Giselbrecht S, Rapp BE, Hirtz M, Niemeyer CM (2014) Advances in DNA-directed immobilization. Curr Opin Chem Biol 18:8–15

    Article  Google Scholar 

  25. Pease AC, Solas D, Sullivan EJ, Cronin MT, Holmes CP, Fodor SP (1994) Light-generated oligonucleotide arrays for rapid DNA sequence analysis. P Natl Acad Sci USA 91:5022–5026

    Article  Google Scholar 

  26. Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, Kobayashi M, Norton H, Brown EL (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotech 14:1675–1680

    Article  Google Scholar 

  27. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270:467–470

    Article  Google Scholar 

  28. Okamoto T, Suzuki T, Yamamoto N (2000) Microarray fabrication with covalent attachment of DNA using Bubble Jet technology. Nat Biotech 18:438–441

    Article  Google Scholar 

  29. Hughes TR, Mao M, Jones AR, Burchard J, Marton MJ, Shannon KW, Lefkowitz SM, Ziman M, Schelter JM, Meyer MR, Kobayashi S, Davis C, Dai H, He YD, Stephaniants SB, Cavet G, Walker WL, West A, Coffey E, Shoemaker DD, Stoughton R, Blanchard AP, Friend SH, Linsley PS (2001) Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotech 19:342–347

    Article  Google Scholar 

  30. Singh-Gasson S, Green RD, Yue Y, Nelson C, Blattner F, Sussman MR, Cerrina F (1999) Maskless fabrication of light-directed oligonucleotide microarrays using a digital micromirror array. Nat Biotech 17:974–978

    Article  Google Scholar 

  31. Gilles PN, Wu DJ, Foster CB, Dillon PJ, Chanock SJ (1999) Single nucleotide polymorphic discrimination by an electronic dot blot assay on semiconductor microchips. Nat Biotech 17:365–370

    Article  Google Scholar 

  32. Egeland RD, Southern EM (2005) Electrochemically directed synthesis of oligonucleotides for DNA microarray fabrication. Nucleic Acids Res 33:e125

    Article  Google Scholar 

  33. Schober A, Gunther R, Schwienhorst A, Doring M, Lindemann BF (1993) Accurate high-speed liquid handling of very small biological samples. Biotechniques 15:324–329

    Google Scholar 

  34. Allain L, Askari M, Stokes D, Vo-Dinh T (2001) Microarray sampling-platform fabrication using bubble-jet technology for a biochip system. Fresen J Anal Chem 371:146–150

    Article  Google Scholar 

  35. Beaucage SL, Caruthers MH (1981) Deoxynucleoside phosphoramidites—A new class of key intermediates for deoxypolynucleotide synthesis. Tetrahedron Lett 22:1859–1862

    Article  Google Scholar 

  36. Moore MF, Beaucage SL (1985) Conceptual basis of the selective activation of bis(dialkylamino)methoxyphosphines by weak acids and its application toward the preparation of deoxynucleoside phosphoramidites in situ. J Org Chem 50:2019–2025

    Article  Google Scholar 

  37. Froehler BC, Ng PG, Matteucci MD (1986) Synthesis of DNA via deoxynucleoside H-phosphonate intermediates. Nucleic Acids Res 14:5399–5407

    Article  Google Scholar 

  38. Blanchard AP, Kaiser RJ, Hood LE (1996) High-density oligonucleotide arrays. Biosens Bioelectron 11:687–690

    Article  Google Scholar 

  39. Human Genome Sequencing C (2004) Finishing the euchromatic sequence of the human genome. Nature 431:931–945

    Article  Google Scholar 

  40. LeProust E (2008) Agilent’s microarray platform: How high-fidelity DNA synthesis maximizes the dynamic range of gene expression measurements. http://www.chem.agilent.com/library/applications/5989-9159en_lo.pdf.

  41. Lausted C, Dahl T, Warren C, King K, Smith K, Johnson M, Saleem R, Aitchison J, Hood L, Lasky SR (2004) POSaM: a fast, flexible, open-source, inkjet oligonucleotide synthesizer and microarrayer. Genome Biol 5:R58

    Article  Google Scholar 

  42. Bietsch A, Zhang J, Hegner M, Lang HP, Gerber C (2004) Rapid functionalization of cantilever array sensors by inkjet printing. Nanotechnology 15:873–880

    Article  Google Scholar 

  43. Yasui T, Inoue Y, Naito T, Okamoto Y, Kaji N, Tokeshi M, Baba Y (2012) Inkjet injection of DNA droplets for microchannel array electrophoresis. Anal Chem 84:9282–9286

    Google Scholar 

  44. Dufva M (2005) Fabrication of high quality microarrays. Biomol Eng 22:173–184

    Article  Google Scholar 

  45. Butler JH, Cronin M, Anderson KM, Biddison GM, Chatelain F, Cummer M, Davi DJ, Fisher L, Frauendorf AW, Frueh FW, Gjerstad C, Harper TF, Kernahan SD, Long DQ, Pho M, Walker JA, Brennan TM (2001) In situ synthesis of oligonucleotide arrays by using surface tension. JACS 123:8887–8894

    Article  Google Scholar 

  46. Lausted CG, Warren CB, Hood LE, Lasky SR (2006) Printing Your Own Inkjet Microarrays. In: Alan K, Brian O (eds) Methods in Enzymology, vol 410. Academic Press, pp 168–189

    Google Scholar 

  47. Goldmann T, Gonzalez JS (2000) DNA-printing: utilization of a standard inkjet printer for the transfer of nucleic acids to solid supports. J Biochem Bioph Methods 42:105–110

    Article  Google Scholar 

  48. Allain LR, Stratis-Cullum DN, Vo-Dinh T (2004) Investigation of microfabrication of biological sample arrays using piezoelectric and bubble-jet printing technologies. Anal Chim Acta 518:77–85

    Article  Google Scholar 

  49. Yetisen AK, Akram MS, Lowe CR (2013) Paper-based microfluidic point-of-care diagnostic devices. Lab Chip 13:2210–2251

    Article  Google Scholar 

  50. Zhao Z, Peytavi R, Diaz-Quijada GA, Picard FJ, Huletsky A, Leblanc É, Frenette J, Boivin G, Veres T, Dumoulin MM, Bergeron MG (2008) Plastic polymers for efficient DNA microarray hybridization: Application to microbiological diagnostics. J Clin Microbiol 46:3752–3758

    Article  Google Scholar 

  51. Saaem I, Ma K-S, Marchi AN, LaBean TH, Tian J (2010) In situ synthesis of DNA microarray on functionalized cyclic olefin copolymer substrate. ACS Appl Mater Interfaces 2:491–497

    Article  Google Scholar 

  52. Phizicky E, Bastiaens PIH, Zhu H, Snyder M, Fields S (2003) Protein analysis on a proteomic scale. Nature 422:208–215

    Article  Google Scholar 

  53. Romanov V, Davidoff SN, Miles AR, Grainger DW, Gale BK, Brooks BD (2014) A critical comparison of protein microarray fabrication technologies. Analyst 139:1303–1326

    Article  Google Scholar 

  54. Lumry R, Eyring H (1954) Conformation changes of proteins. J Phys Chem 58:110–120

    Article  Google Scholar 

  55. Talbert JN, Goddard JM (2012) Enzymes on material surfaces. Colloid Surface B 93:8–19

    Article  Google Scholar 

  56. Xie Y, An J, Yang G, Wu G, Zhang Y, Cui L, Feng Y (2014) Enhanced enzyme kinetic stability by increasing rigidity within the active site. J Biol Chem 289:7994–8006

    Article  Google Scholar 

  57. Kimura J, Kawana Y, Kuriyama T (1988) An immobilized enzyme membrane fabrication method using an ink jet nozzle. Biosensors 4:41–52

    Article  Google Scholar 

  58. Roda A, Guardigli M, Russo C, Pasini P, Baraldini M (2000) Protein microdeposition using a conventional ink-jet printer. Biotechniques 28:492–496

    Google Scholar 

  59. Nishioka GM, Markey AA, Holloway CK (2004) Protein damage in drop-on-demand printers. JACS 126:16320–16321

    Article  Google Scholar 

  60. Cook CC, Wang T, Derby B (2010) Inkjet delivery of glucose oxidase. Chem Commun 46:5452–5454

    Article  Google Scholar 

  61. Khan MS, Li X, Shen W, Garnier G (2010) Thermal stability of bioactive enzymatic papers. Colloid Surface B 75:239–246

    Article  Google Scholar 

  62. Di Risio S, Yan N (2007) Piezoelectric ink-jet printing of horseradish peroxidase: Effect of Ink viscosity modifiers on activity. Macromol Rapid Commun 28:1934–1940

    Article  Google Scholar 

  63. Arrabito G, Musumeci C, Aiello V, Libertino S, Compagnini G, Pignataro B (2009) On the relationship between jetted inks and printed biopatterns: Molecular-thin functional microarrays of glucose oxidase. Langmuir 25:6312–6318

    Article  Google Scholar 

  64. Khan MS, Fon D, Li X, Tian J, Forsythe J, Garnier G, Shen W (2010) Biosurface engineering through ink jet printing. Colloid Surface B 75:441–447

    Article  Google Scholar 

  65. Hossain SMZ, Luckham RE, Smith AM, Lebert JM, Davies LM, Pelton RH, Filipe CDM, Brennan JD (2009) Development of a bioactive paper sensor for detection of neurotoxins using piezoelectric inkjet printing of sol-gel-derived bioinks. Anal Chem 81:5474–5483

    Article  Google Scholar 

  66. Alkasir RSJ, Ornatska M, Andreescu S (2012) Colorimetric paper bioassay for the detection of phenolic compounds. Anal Chem 84:9729–9737

    Article  Google Scholar 

  67. Setti L, Fraleoni-Morgera A, Ballarin B, Filippini A, Frascaro D, Piana C (2005) An amperometric glucose biosensor prototype fabricated by thermal inkjet printing. Biosens Bioelectron 20:2019–2026

    Article  Google Scholar 

  68. Turcu F, Hartwich G, Schäfer D, Schuhmann W (2005) Ink-jet microdispensing for the formation of gradients of immobilised enzyme activity. Macromol Rapid Commun 26:325–330

    Article  Google Scholar 

  69. Setti L, Fraleoni-Morgera A, Mencarelli I, Filippini A, Ballarin B, Di Biase M (2007) An HRP-based amperometric biosensor fabricated by thermal inkjet printing. Sensor Actuat B-Chem 126:252–257

    Article  Google Scholar 

  70. Kimura S, Kameyama A, Nakaya S, Ito H, Narimatsu H (2007) Direct on-membrane glycoproteomic approach using MALDI-TOF mass spectrometry coupled with microdispensing of multiple enzymes. J Proteome Res 6:2488–2494

    Article  Google Scholar 

  71. Suman, O’Reilly E, Kelly M, Morrin A, Smyth MR, Killard AJ (2011) Chronocoulometric determination of urea in human serum using an inkjet printed biosensor. Anal Chim Acta 697:98–102

    Article  Google Scholar 

  72. Yun YH, Lee BK, Choi JS, Kim S, Yoo B, Kim YS, Park K, Cho YW (2011) A glucose sensor fabricated by piezoelectric inkjet printing of conducting polymers and bienzymes. Anal Sci 27:375–379

    Article  Google Scholar 

  73. Arrabito G, Galati C, Castellano S, Pignataro B (2013) Luminometric sub-nanoliter droplet-to-droplet array (LUMDA) and its application to drug screening by phase I metabolism enzymes. Lab Chip 13:68–72

    Article  Google Scholar 

  74. Wang J, Bowie D, Zhang X, Filipe C, Pelton R, Brennan JD (2014) Morphology and entrapped enzyme performance in inkjet-printed sol–gel coatings on paper. Chem Mater 26:1941–1947

    Article  Google Scholar 

  75. Talbert JN, He F, Seto K, Nugen SR, Goddard JM (2014) Modification of glucose oxidase for the development of biocatalytic solvent inks. Enzyme Microb Technol 55:21–25

    Article  Google Scholar 

  76. Weng B, Morrin A, Shepherd R, Crowley K, Killard AJ, Innis PC, Wallace GG (2014) Wholly printed polypyrrole nanoparticle-based biosensors on flexible substrate. J Mat Chem B 2:793–799

    Article  Google Scholar 

  77. Pauling L (1940) A theory of the structure and process of formation of antibodies. JACS 62:2643–2657

    Article  Google Scholar 

  78. Grossberg AL, Stelos P, Pressman D (1962) Structure of fragments of antibody molecules as revealed by reduction of exposed disulfide bonds. P Natl Acad Sci USA 48:1203–1209

    Article  Google Scholar 

  79. Nilsson S, Lager C, Laurell T, Birnbaum S (1995) Thin-layer immunoaffinity chromatography with bar code quantitation of c-reactive protein. Anal Chem 67:3051–3056

    Article  Google Scholar 

  80. Lonini L, Accoto D, Petroni S, Guglielmelli E (2008) Dispensing an enzyme-conjugated solution into an ELISA plate by adapting ink-jet printers. J Biochem Bioph Methods 70:1180–1184

    Article  Google Scholar 

  81. Mujawar LH, Norde W, van Amerongen A (2013) Spot morphology of non-contact printed protein molecules on non-porous substrates with a range of hydrophobicities. Analyst 138:518–524

    Article  Google Scholar 

  82. Li H, Leulmi RF, Juncker D (2011) Hydrogel droplet microarrays with trapped antibody-functionalized beads for multiplexed protein analysis. Lab Chip 11:528–534

    Article  Google Scholar 

  83. Towbin H, Staehelin T, Gordon J (1979) Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. P Natl Acad Sci USA 76:4350–4354

    Article  Google Scholar 

  84. Nagaraj VJ, Eaton S, Wiktor P (2011) NanoProbeArrays for the analysis of ultra-low-volume protein samples using piezoelectric liquid dispensing technology. JALA 16:126–133

    Google Scholar 

  85. Delehanty JB, Ligler FS (2002) A microarray immunoassay for simultaneous detection of proteins and bacteria. Anal Chem 74:5681–5687

    Article  Google Scholar 

  86. Abe K, Kotera K, Suzuki K, Citterio D (2010) Inkjet-printed paperfluidic immuno-chemical sensing device. Anal Bioanal Chem 398:885–893

    Article  Google Scholar 

  87. Yatsushiro S, Akamine R, Yamamura S, Hino M, Kajimoto K, Abe K, Abe H, Kido J-i, Tanaka M, Shinohara Y, Baba Y, Ooie T, Kataoka M (2011) Quantitative analysis of serum procollagen type I C-terminal propeptide by immunoassay on microchip. PLoS ONE 6:e18807

    Article  Google Scholar 

  88. Orelma H, Filpponen I, Johansson L-S, Österberg M, Rojas OJ, Laine J (2012) Surface functionalized nanofibrillar cellulose (NFC) film as a platform for immunoassays and diagnostics. Biointerphases 7:61

    Article  Google Scholar 

  89. Kido J-i, Abe K, Yatsushiro S, Bando M, Hiroshima Y, Nagata T, Ooie T, Tanaka M, Kataoka M (2012) Determination of calprotectin in gingival crevicular fluid by immunoassay on a microchip. Clin Biochem 45:1239–1244

    Article  Google Scholar 

  90. Abe K, Hashimoto Y, Yatsushiro S, Yamamura S, Bando M, Hiroshima Y, Kido J-I, Tanaka M, Shinohara Y, Ooie T, Baba Y, Kataoka M (2013) Simultaneous immunoassay analysis of plasma IL-6 and TNF-α on a microchip. PLoS ONE 8:e53620

    Article  Google Scholar 

  91. Feyssa B, Liedert C, Kivimaki L, Johansson L-S, Jantunen H, Hakalahti L (2013) Patterned immobilization of antibodies within roll-to-roll hot embossed polymeric microfluidic channels. PLoS ONE 8:e68918

    Article  Google Scholar 

  92. Mujawar L, Moers A, Norde W, van Amerongen A (2013) Rapid mastitis detection assay on porous nitrocellulose membrane slides. Anal Bioanal Chem 405:7469–7476

    Article  Google Scholar 

  93. Henares TG, Mizutani F, Hisamoto H (2008) Current development in microfluidic immunosensing chip. Anal Chim Acta 611:17–30

    Article  Google Scholar 

  94. Abe K, Suzuki K, Citterio D (2008) Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal Chem 80:6928–6934

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Citterio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Henares, T., Yamada, K., Suzuki, K., Citterio, D. (2015). Inkjet Printing of Biomolecules for Biorecognition. In: Rodríguez-Hernández, J., Cortajarena, A. (eds) Design of Polymeric Platforms for Selective Biorecognition. Springer, Cham. https://doi.org/10.1007/978-3-319-17061-9_8

Download citation

Publish with us

Policies and ethics