Skip to main content

Modification of Polymer Surfaces for Biofunctionalization

  • Chapter
  • First Online:
Design of Polymeric Platforms for Selective Biorecognition
  • 803 Accesses

Abstract

The present chapter provides a collection of the protocols that have been involved in surface chemical derivatization of polymeric materials designed for immobilization of molecules involved in a biorecognition event. The introduction of primary reactive groups at the surface of initially non-reactive materials is discussed and split into two sections: wet chemical methods and physical “dry” methods. Further substrate functionalization is then described according to the type of primary reactive group present at the surface after initial treatment. Specific features such as reversibility or spatial control are highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gyorgy, P.; Rose, C. S.; Eakin, R. E.; Snell, E. E.; Williams, R. J. Egg-White Injury As the Result of Nonabsorption or Inactivation of Biotin. Science 1941, 93, 477–478.

    Google Scholar 

  2. DeChancie, J.; Houk, K. N. The Origins of Femtomolar Protein–Ligand Binding: Hydrogen-Bond Cooperativity and Desolvation Energetics in the Biotin–(Strept)Avidin Binding Site. J. Am. Chem. Soc. 2007, 129, 5419–5429.

    Google Scholar 

  3. Holmberg, A.; Blomstergren, A.; Nord, O.; Lukacs, M.; Lundeberg, J.; Uhlén, M. The biotin-streptavidin interaction can be reversibly broken using water at elevated temperatures. Electrophoresis 2005, 26, 501–510.

    Google Scholar 

  4. Chivers, C. E.; Crozat, E.; Chu, C.; Moy, V. T.; Sherratt, D. J; Howarth, M. A streptavidin variant with slower biotin dissociation and increased mechanostability. Nat. Methods 2010, 7, 391–393.

    Google Scholar 

  5. Breitling, F.; Nesterov, A.; Stadler, V.; Felgenhauer, T.; Bischoff, F. R. High-density peptide arrays. Mol. BioSyst. 2009, 5, 224–234.

    Google Scholar 

  6. Hage, D. S.; Anguizola, J. A.; Bi, C.; Li, R.; Matsuda, R.; Papastavros, E.; Pfaunmiller, E.; Vargas, J.; Zheng, X. Pharmaceutical and biomedical applications of affinity chromatography: Recent trends and developments. J. Pharm. Biomed. Anal. 2012, 69, 93–105.

    Google Scholar 

  7. Liedberg, B.; Nylander, C.; Lunström, I. Surface plasmon resonance for gas detection and biosensing. Sensors and Actuators 1983, 4, 299–304.

    Google Scholar 

  8. Do, T.; Ho, F.; Heidecker, B.; Witte, K.; Chang, L; Lerner, L. A rapid method for determining dynamic binding capacity of resins for the purification of proteins. Protein Expression Purif. 2008, 60, 147–150.

    Google Scholar 

  9. Engvall, E.; Perlmann, P. Enzyme-linked immunosorbent assay (ELISA) quantitative assay of immunoglobulin G. Immunochemistry 1971, 8, 871–874.

    Google Scholar 

  10. Van Weemen, B. K.; Schuurs, A. H. W. M. Immunoassay using antigen—enzyme conjugates. FEBS Lett. 1971, 15, 232–236.

    Google Scholar 

  11. Delaittre, G.; Greiner, A. M.; Pauloehrl, T.; Bastmeyer, M.; Barner-Kowollik, C. Chemical approaches to synthetic polymer surface biofunctionalization for targeted cell adhesion using small binding motifs. Soft Matter 2012, 8, 7323–7347.

    Google Scholar 

  12. Stella, B.; Arpicco, S.; Peracchia, M. T.; Desmaële, D.; Hoebeke, J.; Renoir, M.; D'Angelo, J.; Cattel, L.; Couvreur, P. Design of folic acid-conjugated nanoparticles for drug targeting. J. Pharm. Sci. 2000, 89, 1452–1464.

    Google Scholar 

  13. Low, P. S.; Henne, W. A.; Doorneweerd, D. D. Discovery and Development of Folic-Acid-Based Receptor Targeting for Imaging and Therapy of Cancer and Inflammatory Diseases. Acc. Chem. Res. 2007, 41, 120–129.

    Google Scholar 

  14. Li, M.; Wong, K. K. W; Mann, S. Organization of Inorganic Nanoparticles Using Biotin–Streptavidin Connectors. Chem. Mater. 1998, 11, 23–26.

    Google Scholar 

  15. Lee, J.; Govorov, A. O.; Kotov, N. A. Bioconjugated Superstructures of CdTe Nanowires and Nanoparticles: Multistep Cascade Förster Resonance Energy Transfer and Energy Channeling. Nano Lett. 2005, 5, 2063–2069.

    Google Scholar 

  16. Morais, S.; Marco-Moles, R.; Puchades, R.; Maquieira, A. DNA microarraying on compact disc surfaces. Application to the analysis of single nucleotide polymorphisms in Plum pox virus. Chem. Commun. 2006, 2368–2370.

    Google Scholar 

  17. McLaughlin, C. K.; Hamblin, G. D.; Sleiman, H. F. Supramolecular DNA assembly. Chem. Soc. Rev. 2011, 40, 5647–5656.

    Google Scholar 

  18. Rigaut, G.; Shevchenko, A.; Rutz, B.; Wilm, M.; Mann, M; Seraphin, B. A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 1999, 17, 1030–1032.

    Google Scholar 

  19. Goddard, J. M.; Hotchkiss, J. H. Polymer surface modification for the attachment of bioactive compounds. Prog. Polym. Sci. 2007, 32, 698–725.

    Google Scholar 

  20. Hersel, U.; Dahmen, C.; Kessler, H. RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 2003, 24, 4385–4415.

    Google Scholar 

  21. Reynhout, I. C.; Delaittre, G.; Kim, H.-C.; Nolte, R. J. M.; Cornelissen, J. J. L. M. Nanoscale organization of proteins via block copolymer lithography and non-covalent bioconjugation. J. Mater. Chem. B 2013, 1, 3026–3030.

    Google Scholar 

  22. Ates, M. A review study of (bio)sensor systems based on conducting polymers. Mater. Sci. Eng., C 2013, 33, 1853–1859.

    Google Scholar 

  23. Haddour, N.; Cosnier, S.; Gondran, C. Electrogeneration of a Poly(pyrrole)-NTA Chelator Film for a Reversible Oriented Immobilization of Histidine-Tagged Proteins. J. Am. Chem. Soc. 2005, 127, 5752–5753.

    Google Scholar 

  24. Xie, H.; Luo, S.-C.; Yu, H.-h. Electric-Field-Assisted Growth of Functionalized Poly(3,4-ethylenedioxythiophene) Nanowires for Label-Free Protein Detection. Small 2009, 5, 2611–2617.

    Google Scholar 

  25. Sosnowska, M.; Pieta, P.; Sharma, P. S.; Chitta, R.; Kc, C. B.; Bandi, V.; D’Souza, F; Kutner, W. Piezomicrogravimetric and Impedimetric Oligonucleotide Biosensors Using Conducting Polymers of Biotinylated Bis(2,2′-bithien-5-yl)methane as Recognition Units. Anal. Chem. 2013, 85, 7454–7461.

    Google Scholar 

  26. Song, H. K.; Toste, B.; Ahmann, K.; Hoffman-Kim, D.; Palmore, G. T. R. Micropatterns of positive guidance cues anchored to polypyrrole doped with polyglutamic acid: A new platform for characterizing neurite extension in complex environments. Biomaterials 2006, 27, 473–484.

    Google Scholar 

  27. Guimard, N. K.; Gomez, N.; Schmidt, C. E. Conducting polymers in biomedical engineering. Prog. Polym. Sci. 2007, 32, 876–921.

    Google Scholar 

  28. Santiago, L. Y.; Nowak, R. W.; Peter Rubin, J.; Marra, K. G. Peptide-surface modification of poly(caprolactone) with laminin-derived sequences for adipose-derived stem cell applications. Biomaterials 2006, 27, 2962–2969.

    Google Scholar 

  29. Causa, F.; Battista, E.; Della Moglie, R.; Guarnieri, D.; Iannone, M.; Netti, P. A. Surface Investigation on Biomimetic Materials to Control Cell Adhesion: The Case of RGD Conjugation on PCL. Langmuir 2010, 26, 9875–9884.

    Google Scholar 

  30. Zhang, H.; Hollister, S. Comparison of bone marrow stromal cell behaviors on poly(caprolactone) with or without surface modification: studies on cell adhesion, survival and proliferation. J. Biomater. Sci., Polym. Ed. 2009, 20, 1975–1993.

    Google Scholar 

  31. Gabriel, M.; Nazmi, K.; Dahm, M.; Zentner, A.; Vahl, C.-F; Strand, D. Covalent RGD Modification of the Inner Pore Surface of Polycaprolactone Scaffolds. J. Biomater. Sci., Polym. Ed. 2012, 23, 941–953.

    Google Scholar 

  32. Gabriel, M.; Van Nieuw Amerongen, G. P.; Van Hinsbergh, V. W. M.; Van Nieuw Amerongen, A. V.; Zentner, A. Direct grafting of RGD-motif-containing peptide on the surface of polycaprolactone films. J. Biomater. Sci., Polym. Ed. 2006, 17, 567–577.

    Google Scholar 

  33. Croll, T. I.; O'Connor, A. J.; Stevens, G. W.; Cooper-White, J. J. Controllable Surface Modification of Poly(lactic-co-glycolic acid) (PLGA) by Hydrolysis or Aminolysis I: Physical, Chemical, and Theoretical Aspects. Biomacromolecules 2004, 5, 463–473.

    Google Scholar 

  34. Ning, C.; Yingxue, G.; Kerm Sin, C.; Vincent, C.; Kin, L. Adhesion dynamics of porcine esophageal fibroblasts on extracellular matrix protein-functionalized poly(lactic acid). Biomed. Mater. 2008, 3, 015014.

    Google Scholar 

  35. Rohman, G.; Baker, S. C.; Southgate, J.; Cameron, N. R. Heparin functionalisation of porous PLGA scaffolds for controlled, biologically relevant delivery of growth factors for soft tissue engineering. J. Mater. Chem. 2009, 19, 9265–9273.

    Google Scholar 

  36. Bech, L.; Meylheuc, T.; Lepoittevin, B.; Roger, P. Chemical surface modification of poly(ethylene terephthalate) fibers by aminolysis and grafting of carbohydrates. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 2172–2183.

    Google Scholar 

  37. Patel, S.; Thakar, R. G.; Wong, J.; McLeod, S. D.; Li, S. Control of cell adhesion on poly(methyl methacrylate). Biomaterials 2006, 27, 2890–2897.

    Google Scholar 

  38. Bai, Y.; Koh, C. G.; Boreman, M.; Juang, Y.-J.; Tang, I. C.; Lee, L. J; Yang, S.-T. Surface Modification for Enhancing Antibody Binding on Polymer-Based Microfluidic Device for Enzyme-Linked Immunosorbent Assay. Langmuir 2006, 22, 9458–9467.

    Google Scholar 

  39. Henry, A. C.; Tutt, T. J.; Galloway, M.; Davidson, Y. Y.; McWhorter, C. S.; Soper, S. A.; McCarley, R. L. Surface Modification of Poly(methyl methacrylate) Used in the Fabrication of Microanalytical Devices. Anal. Chem. 2000, 72, 5331–5337.

    Google Scholar 

  40. Hosseini, S.; Ibrahim, F.; Djordjevic, I.; Koole, L. H. Recent advances in surface functionalization techniques on polymethacrylate materials for optical biosensor applications. Analyst 2014, 139, 2933–2943.

    Google Scholar 

  41. Tsuji, H.; Nakahara, K. Poly(L-lactide). IX. Hydrolysis in acid media. J. Appl. Polym. Sci. 2002, 86, 186–194.

    Google Scholar 

  42. Sun, H.; Önneby, S. Facile polyester surface functionalization via hydrolysis and cell-recognizing peptide attachment. Polym. Int. 2006, 55, 1336–1340.

    Google Scholar 

  43. Xu, F. J.; Wang, Z. H.; Yang, W. T. Surface functionalization of polycaprolactone films via surface-initiated atom transfer radical polymerization for covalently coupling cell-adhesive biomolecules. Biomaterials 2010, 31, 3139–3147.

    Google Scholar 

  44. Punet, X.; Mauchauffé, R.; Giannotti, M. I.; Rodríguez-Cabello, J. C.; Sanz, F.; Engel, E.; Mateos-Timoneda, M. A.; Planell, J. A. Enhanced Cell-Material Interactions through the Biofunctionalization of Polymeric Surfaces with Engineered Peptides. Biomacromolecules 2013, 14, 2690–2702.

    Google Scholar 

  45. Diaz-Quijada, G. A.; Peytavi, R.; Nantel, A.; Roy, E.; Bergeron, M. G.; Dumoulin, M. M.; Veres, T. Surface modification of thermoplastics-towards the plastic biochip for high throughput screening devices. Lab Chip 2007, 7, 856–862.

    Google Scholar 

  46. Boxus, T.; Touillaux, R.; Dive, G.; Marchand-Brynaert, J. Synthesis and evaluation of RGD peptidomimetics aimed at surface bioderivatization of polymer substrates. Bioorg. Med. Chem. 1998, 6, 1577–1595.

    Google Scholar 

  47. Marchand-Brynaert, J.; Detrait, E.; Noiset, O.; Boxus, T.; Schneider, Y.-J.; Remacle, C. Biological evaluation of RGD peptidomimetics, designed for the covalent derivatization of cell culture substrata, as potential promoters of cellular adhesion. Biomaterials 1999, 20, 1773–1782.

    Google Scholar 

  48. Boxus, T.; Deldime-Rubbens, M.; Mougenot, P.; Schneider, Y.-J.; Marchand-Brynaert, J. Chemical assays of end-groups displayed on the surface of poly(ethylene terephthalate) (PET) films and membranes by radiolabeling. Polym. Adv. Technol. 1996, 7, 589–598.

    Google Scholar 

  49. Massia, S. P.; Hubbell, J. A. Covalently attached GRGD on polymer surfaces promotes biospecific adhesion of mammalian cells. Ann. N. Y. Acad. Sci. 1990, 589, 261–70.

    Google Scholar 

  50. Massia, S. P.; Hubbell, J. A. Human endothelial cell interactions with surface-coupled adhesion peptides on a nonadhesive glass substrate and two polymeric biomaterials. J. Biomed. Mater. Res. 1991, 25, 223–42.

    Google Scholar 

  51. Hebeiss, I.; Truckenmuller, R.; Giselbrecht, S.; Schepers, U. Novel three-dimensional Boyden chamber system for studying transendothelial transport. Lab Chip 2012, 12, 829–834.

    Google Scholar 

  52. Kido, H.; Maquieira, A.; Hammock, B. D. Disc-based immunoassay microarrays. Anal. Chim. Acta 2000, 411, 1–11.

    Google Scholar 

  53. Bañuls, M.-J.; García-Piñón, F.; Puchades, R.; Maquieira, Á. Chemical Derivatization of Compact Disc Polycarbonate Surfaces for SNPs detection. Bioconjug. Chem. 2008, 19, 665–672.

    Google Scholar 

  54. Hirschbiel, A. F.; Geyer, S.; Yameen, B.; Welle, A.; Nikolov, P.; Giselbrecht, S.; Scholpp, S.; Delaittre, G.; Barner-Kowollik, C. Photolithographic Patterning of 3D-Formed Polycarbonate Films for Targeted Cell Guiding. Adv. Mater. 2015 , 27, 2621–2626.

    Google Scholar 

  55. Lin, Y.-C.; Brayfield, C. A.; Gerlach, J. C.; Rubin, J. P.; Marra, K. G. Peptide modification of polyethersulfone surfaces to improve adipose-derived stem cell adhesion. Acta Biomater. 2009, 5, 1416–1424.

    Google Scholar 

  56. Higuchi, A.; Shirano, K.; Harashima, M.; Yoon, B. O.; Hara, M.; Hattori, M.; Imamura, K. Chemically modified polysulfone hollow fibers with vinylpyrrolidone having improved blood compatibility. Biomaterials 2002, 23, 2659–2666.

    Google Scholar 

  57. Costello, C. A.; McCarthy, T. J. Surface modification of poly(tetrafluoroethylene) with benzoin dianion. Macromolecules 1984, 17, 2940–2942.

    Google Scholar 

  58. Costello, C. A.; McCarthy, T. J. Surface-selective introduction of specific functionalities onto poly(tetrafluoroethylene). Macromolecules 1987, 20, 2819–2828.

    Google Scholar 

  59. Bening, R. C.; McCarthy, T. J. Surface modification of poly(tetrafluoroethylene-co-hexafluoropropylene): introduction of alcohol functionality. Macromolecules 1990, 23, 2648–2655.

    Google Scholar 

  60. Tong, Y. W.; Shoichet, M. S. Peptide surface modification of poly(tetrafluoroethylene-co-hexafluoropropylene) enhances its interaction with central nervous system neurons. J. Biomed. Mater. Res. 1998, 42, 85–95.

    Google Scholar 

  61. Gabriel, M.; Dahm, M.; Vahl, C. F. Wet-chemical approach for the cell-adhesive modification of polytetrafluoroethylene. Biomed. Mater. 2011, 6, 035007.

    Google Scholar 

  62. Mikhail, A. S.; Jones, K. S.; Sheardown, H. Dendrimer-grafted cell adhesion peptide–modified PDMS. Biotechnol. Prog. 2008, 24, 938–944.

    Google Scholar 

  63. Zhou, J.; Ellis, A. V.; Voelcker, N. H. Recent developments in PDMS surface modification for microfluidic devices. Electrophoresis 2010, 31, 2–16.

    Google Scholar 

  64. Abbasi, F.; Mirzadeh, H.; Katbab, A.-A. Modification of polysiloxane polymers for biomedical applications: a review. Polym. Int. 2001, 50, 1279–1287.

    Google Scholar 

  65. Ranieri, J. P.; Bellamkonda, R.; Bekos, E. J.; Gardella, J. A., Jr.; Mathieu, H. J.; Ruiz, L.; Aebischer, P. Spatial control of neuronal cell attachment and differentiation on covalently patterned laminin oligopeptide substrates. Int. J. Dev. Neurosci. 1994, 12, 725–35.

    Google Scholar 

  66. Sugawara, T.; Matsuda, T. Photochemical surface derivatization of a peptide containing Arg-Gly-Asp (RGD). J. Biomed. Mater. Res. 1995, 29, 1047–52.

    Google Scholar 

  67. Hatakeyama, H.; Kikuchi, A.; Yamato, M.; Okano, T. Patterned biofunctional designs of thermoresponsive surfaces for spatiotemporally controlled cell adhesion, growth, and thermally induced detachment. Biomaterials 2007, 28, 3632–3643.

    Google Scholar 

  68. Coad, B. R.; Jasieniak, M.; Griesser, S. S.; Griesser, H. J. Controlled covalent surface immobilisation of proteins and peptides using plasma methods. Surf. Coat. Technol. 2013, 233, 169–177.

    Google Scholar 

  69. Alf, M. E.; Asatekin, A.; Barr, M. C.; Baxamusa, S. H.; Chelawat, H.; Ozaydin-Ince, G.; Petruczok, C. D.; Sreenivasan, R.; Tenhaeff, W. E.; Trujillo, N. J.; Vaddiraju, S.; Xu, J.; Gleason, K. K. Chemical Vapor Deposition of Conformal, Functional, and Responsive Polymer Films. Adv. Mater. 2010, 22, 1993–2027.

    Google Scholar 

  70. Conrad, J. R.; Radtke, J. L.; Dodd, R. A.; Worzala, F. J.; Tran, N. C. Plasma source ion‐implantation technique for surface modification of materials. J. Appl. Phys. 1987, 62, 4591–4596.

    Google Scholar 

  71. Ho, J. P. Y.; Nosworthy, N. J.; Bilek, M. M. M.; Gan, B. K.; McKenzie, D. R.; Chu, P. K.; dos Remedios, C. G. Plasma-Treated Polyethylene Surfaces for Improved Binding of Active Protein. Plasma Processes Polym. 2007, 4, 583–590.

    Google Scholar 

  72. Gubala, V.; Le, N. C. H.; Gandhiraman, R. P.; Coyle, C.; Daniels, S.; Williams, D. E. Functionalization of cyclo-olefin polymer substrates by plasma oxidation: Stable film containing carboxylic acid groups for capturing biorecognition elements. Colloids Surf., B 2010, 81, 544–548.

    Google Scholar 

  73. Zilio, C.; Sola, L.; Damin, F.; Faggioni, L.; Chiari, M. Universal hydrophilic coating of thermoplastic polymers currently used in microfluidics. Biomed. Microdevices 2014, 16, 107–114.

    Google Scholar 

  74. Bilek, M. M. M.; Bax, D. V.; Kondyurin, A.; Yin, Y.; Nosworthy, N. J.; Fisher, K.; Waterhouse, A.; Weiss, A. S.; dos Remedios, C. G.; McKenzie, D. R. Free radical functionalization of surfaces to prevent adverse responses to biomedical devices. Proc. Natl. Acad. Nat. USA 2011, 108, 14405–14410.

    Google Scholar 

  75. De Cooman, H.; Desmet, T.; Callens, F.; Dubruel, P. Role of radicals in UV-initiated postplasma grafting of poly-ε-caprolactone: An electron paramagnetic resonance study. J. Polym. Sci., Part A: Polym. Chem. 2012, 50, 2142–2149.

    Google Scholar 

  76. Muir, B. W.; Barden, M. C.; Collett, S. P.; Gorse, A.-D.; Monteiro, R.; Yang, L.; McDougall, N. A.; Gould, S.; Maeji, N. J. High-throughput optimization of surfaces for antibody immobilization using metal complexes. Anal. Biochem. 2007, 363, 97–107.

    Google Scholar 

  77. Song, L.; Zhao, J.; Jin, J.; Ma, J.; Liu, J.; Luan, S.; Yin, J. Fabricating antigen recognition and anti-bioadhesion polymeric surface via a photografting polymerization strategy. Mater. Sci. Eng., C 2014, 36, 57–64.

    Google Scholar 

  78. Ameduri, B. From Vinylidene Fluoride (VDF) to the Applications of VDF-Containing Polymers and Copolymers: Recent Developments and Future Trends. Chem. Rev. 2009, 109, 6632–6686.

    Google Scholar 

  79. Pâslaru, E.; Baican, M. C.; Hitruc, E. G.; Nistor, M. T.; Poncin-Epaillard, F; Vasile, C. Immunoglobulin G immobilization on PVDF surface. Colloids Surf., B 2014, 115, 139–149.

    Google Scholar 

  80. Friedrich, J.; Kühn, G.; Mix, R.; Hoffmann, K.; Resch-Genger, U. Tailoring of Polymer Surfaces with Monotype Functional Groups of Variable Density Using Chemical and Plasma Chemical Processes. In Characterization of Polymer Surfaces and Thin Films; Grundke, K., Stamm, M., Adler, H.-J., Eds.; Springer Berlin Heidelberg, 2006; Vol. 132; pp 62–71.

    Google Scholar 

  81. Li, C.; Jin, J.; Liu, J.; Xu, X.; Yin, J. Improving hemocompatibility of polypropylene via surface-initiated atom transfer radical polymerization for covalently coupling BSA. RSC Adv. 2014, 4, 24842–24851.

    Google Scholar 

  82. Jonsson, C.; Aronsson, M.; Rundstrom, G.; Pettersson, C.; Mendel-Hartvig, I.; Bakker, J.; Martinsson, E.; Liedberg, B.; MacCraith, B.; Ohman, O.; Melin, J. Silane-dextran chemistry on lateral flow polymer chips for immunoassays. Lab Chip 2008, 8, 1191–1197.

    Google Scholar 

  83. Ma, J.; Luan, S.; Song, L.; Jin, J.; Yuan, S.; Yan, S.; Yang, H.; Shi, H; Yin, J. Fabricating a Cycloolefin Polymer Immunoassay Platform with a Dual-Function Polymer Brush via a Surface-Initiated Photoiniferter-Mediated Polymerization Strategy. ACS Appl. Mater. Interfaces 2014, 6, 1971–1978.

    Google Scholar 

  84. Hou, J.; Shi, Q.; Stagnaro, P.; Ye, W.; Jin, J.; Conzatti, L.; Yin, J. Aqueous-based immobilization of initiator and surface-initiated ATRP to construct hemocompatible surface of poly (styrene-b –(ethylene-co-butylene)-b-styrene) elastomer. Colloids Surf., B 2013, 111, 333–341.

    Google Scholar 

  85. Petersen, S.; Wulf, K.; Schunemann, S.; Teske, M.; Schmitz, K. P; Sternberg, K. Biofunctionalization of Polymer Implant Surfaces: From Drug Delivery to Stable Surface Functionality. Biomed. Tech. 2013.

    Google Scholar 

  86. Paletta, J. R. J.; Bockelmann, S.; Walz, A.; Theisen, C.; Wendorff, J. H.; Greiner, A.; Fuchs-Winkelmann, S.; Schofer, M. D. RGD-functionalisation of PLLA nanofibers by surface coupling using plasma treatment: influence on stem cell differentiation. J. Mater. Sci. Mater. Med. 2010, 21, 1363–1369.

    Google Scholar 

  87. Wen, F.; Wong, H. K.; Tay, C. Y.; Yu, H.; Li, H.; Yu, T.; Tijore, A.; Boey, F. Y. C.; Venkatraman, S. S.; Tan, L. P. Induction of Myogenic Differentiation of Human Mesenchymal Stem Cells Cultured on Notch Agonist (Jagged-1) Modified Biodegradable Scaffold Surface. ACS Appl. Mater. Interfaces 2014, 6, 1652–1661.

    Google Scholar 

  88. Wang, F.; Li, Z.; Lannutti, J. L.; Wagner, W. R.; Guan, J. Synthesis, characterization and surface modification of low moduli poly(ether carbonate urethane)ureas for soft tissue engineering. Acta Biomater. 2009, 5, 2901–2912.

    Google Scholar 

  89. Graz, I.; Ebner, A.; Bauer, S.; Romanin, C.; Gruber, H. Micropatterned atmospheric pressure discharge surface modification of fluorinated polymer films for mammalian cell adhesion and protein binding. Appl. Phys. A: Mater. Sci. Process. 2008, 92, 547–555.

    Google Scholar 

  90. Kogelschatz, U.; Eliasson, B.; Egli, W. From ozone generators to flat television screens: history and future potential of dielectric-barrier discharges. Pure Appl. Chem. 1999, 71, 1819–1828.

    Google Scholar 

  91. Ranieri, J. P.; Bellamkonda, R.; Bekos, E. J.; Vargo, T. G.; Gardella, J. A.; Aebischer, P. Neuronal cell attachment to fluorinated ethylene propylene films with covalently immobilized laminin oligopeptides YIGSR and IKVAV. II. J. Biomed. Mater. Res. 1995, 29, 779–785.

    Google Scholar 

  92. Heuts, J.; Salber, J.; Goldyn, A. M.; Janser, R.; Möller, M.; Klee, D. Bio-functionalized star PEG-coated PVDF surfaces for cytocompatibility-improved implant components. J. Biomed. Mater. Res., Part A 2010, 92A, 1538–1551.

    Google Scholar 

  93. Wang, Y.-Y.; Lü, L.-X.; Shi, J.-C.; Wang, H.-F.; Xiao, Z.-D; Huang, N.-P. Introducing RGD Peptides on PHBV Films through PEG-Containing Cross-Linkers to Improve the Biocompatibility. Biomacromolecules 2011, 12, 551–559.

    Google Scholar 

  94. Hu, Y.; Winn Shelley, R.; Krajbich, I.; Hollinger Jeffrey, O. Porous polymer scaffolds surface-modified with arginine-glycine-aspartic acid enhance bone cell attachment and differentiation in vitro. J. Biomed. Mater. Res., Part A 2003, 64, 583–90.

    Google Scholar 

  95. Guan, J.; Sacks, M. S.; Beckman, E. J.; Wagner, W. R. Biodegradable poly(ether ester urethane)urea elastomers based on poly(ether ester) triblock copolymers and putrescine: synthesis, characterization and cytocompatibility. Biomaterials 2004, 25, 85–96.

    Google Scholar 

  96. Cifuentes, A.; Borrós, S. Comparison of Two Different Plasma Surface-Modification Techniques for the Covalent Immobilization of Protein Monolayers. Langmuir 2013, 29, 6645–6651.

    Google Scholar 

  97. Ito, Y.; Kajihara, M.; Imanishi, Y. Materials for enhancing cell adhesion by immobilization of cell-adhesive peptide. J. Biomed. Mater. Res. 1991, 25, 1325–1337.

    Google Scholar 

  98. Yanagi, M.; Kishida, A.; Shimotakahara, T.; Matsumoto, H.; Nishijima, H.; Akashi, M.; Aikou, T. Experimental study of bioactive polyurethane sponge as an artificial trachea. Asaio J. 1994, 40, M412–8.

    Google Scholar 

  99. Jung, H.; Ahn, K.-D.; Han, D.; Ahn, D.-J. Surface characteristics and fibroblast adhesion behavior of RGD-immobilized biodegradable PLLA films. Macromol. Res. 2005, 13, 446–452.

    Google Scholar 

  100. Jung, H. J.; Park, K.; Kim, J.-J.; Lee, J. H.; Han, K.-O.; Han, D. K. Effect of RGD-immobilized dual-pore poly(L-lactic acid) scaffolds on chondrocyte proliferation and extracellular matrix production. Artificial Organs 2008, 32, 981–989.

    Google Scholar 

  101. Pearson, H. A.; Urban, M. W. Simple click reactions on polymer surfaces leading to antimicrobial behavior. J. Mater. Chem. B 2014, 2, 2084–2087.

    Google Scholar 

  102. Francesch, L.; Garreta, E.; Balcells, M.; Edelman, E. R.; Borrós, S. Fabrication of Bioactive Surfaces by Plasma Polymerization Techniques Using a Novel Acrylate-Derived Monomer. Plasma Processes Polym. 2005, 2, 605–611.

    Google Scholar 

  103. Francesch, L.; Borros, S.; Knoll, W.; Förch, R. Surface Reactivity of Pulsed-Plasma Polymerized Pentafluorophenyl Methacrylate (PFM) toward Amines and Proteins in Solution. Langmuir 2007, 23, 3927–3931.

    Google Scholar 

  104. Carlisle, E. S.; Mariappan, M. R.; Nelson, K. D.; Thomes, B. E.; Timmons, R. B.; Constantinescu, A.; Eberhart, R. C.; Bankey, P. E. Enhancing hepatocyte adhesion by pulsed plasma deposition and polyethylene glycol coupling. Tissue Engineering 2000, 6, 45–52.

    Google Scholar 

  105. Aucoin, L.; Griffith, C. M.; Pleizier, G.; Deslandes, Y.; Sheardown, H. Interactions of corneal epithelial cells and surfaces modified with cell adhesion peptide combinations. J. Biomater. Sci., Polym. Ed. 2002, 13, 447–462.

    Google Scholar 

  106. Breuers, W.; Klee, D.; Höcker, H.; Mittermayer, C. Immobilization of a fibronectin fragment at the surface of a polyetherurethane film. J. Mater. Sci.: Mater. Med. 1991, 2, 106–109.

    Google Scholar 

  107. Hirsh, S. L.; Bilek, M. M. M.; Bax, D. V.; Kondyurin, A.; Kosobrodova, E.; Tsoutas, K.; Tran, C. T. H.; Waterhouse, A.; Yin, Y.; Nosworthy, N. J.; McKenzie, D. R.; dos Remedios, C. G.; Ng, M. K. C.; Weiss, A. S. Ion implanted, radical-rich surfaces for the rapid covalent immobilization of active biomolecules. AIP Conf. Proc. 2013, 1525, 364–369.

    Google Scholar 

  108. Bilek, M. M. M. Biofunctionalization of surfaces by energetic ion implantation: Review of progress on applications in implantable biomedical devices and antibody microarrays. Appl. Surf. Sci. 2014, 310, 3–10.

    Google Scholar 

  109. Bilek, M. M.; McKenzie, D. R. Plasma modified surfaces for covalent immobilization of functional biomolecules in the absence of chemical linkers: towards better biosensors and a new generation of medical implants. Biophys. Rev. 2010, 2, 55–65.

    Google Scholar 

  110. Nosworthy, N. J.; Ho, J. P. Y.; Kondyurin, A.; McKenzie, D. R.; Bilek, M. M. M. The attachment of catalase and poly-l-lysine to plasma immersion ion implantation-treated polyethylene. Acta Biomater. 2007, 3, 695–704.

    Google Scholar 

  111. Nosworthy, N. J.; Kondyurin, A.; Bilek, M. M. M.; McKenzie, D. R. Ion implantation treatment of beads for covalent binding of molecules: Application to bioethanol production using thermophilic beta-glucosidase. Enzym. Microb. Technol. 2014, 54, 20–24.

    Google Scholar 

  112. Kondyurin, A.; Nosworthy, N. J.; Bilek, M. M. M. Attachment of horseradish peroxidase to polytetrafluorethylene (teflon) after plasma immersion ion implantation. Acta Biomater. 2008, 4, 1218–1225.

    Google Scholar 

  113. Bax, D. V.; McKenzie, D. R.; Weiss, A. S.; Bilek, M. M. M. The linker-free covalent attachment of collagen to plasma immersion ion implantation treated polytetrafluoroethylene and subsequent cell-binding activity. Biomaterials 2010, 31, 2526–2534.

    Google Scholar 

  114. Hirsh, S. L.; Nosworthy, N. J.; Kondyurin, A.; dos Remedios, C. G.; McKenzie, D. R.; Bilek, M. M. M. Linker-free covalent thermophilic [small beta]-glucosidase functionalized polymeric surfaces. J. Mater. Chem. 2011, 21, 17832–17841.

    Google Scholar 

  115. Kosobrodova, E.; Mohamed, A.; Su, Y.; Kondyurin, A.; dos Remedios, C. G.; McKenzie, D. R.; Bilek, M. M. M. Cluster of differentiation antibody microarrays on plasma immersion ion implanted polycarbonate. Mater. Sci. Eng., C 2014, 35, 434–440.

    Google Scholar 

  116. MacDonald, C.; Morrow, R.; Weiss, A. S.; Bilek, M. M. M. Covalent attachment of functional protein to polymer surfaces: a novel one-step dry process. J. R. Soc. Interface 2008, 5, 663–669.

    Google Scholar 

  117. Jung, C.-H.; Hwang, I.-T.; Kuk, I.-S.; Choi, J.-H.; Oh, B.-K.; Lee, Y.-M. Poly(acrylic acid)-Grafted Fluoropolymer Films for Highly Sensitive Fluorescent Bioassays. ACS Appl. Mater. Interfaces 2013, 5, 2155–2160.

    Google Scholar 

  118. Beachell, H. C.; Nemphos, S. P. Oxidative degradation of polyethylene. J. Polym. Sci. 1956, 21, 113–124.

    Google Scholar 

  119. Cooper, G. D.; Prober, M. The action of oxygen corona and of ozone on polyethylene. J. Polym. Sci. 1960, 44, 397–409.

    Google Scholar 

  120. Dietrich, M.; Delaittre, G.; Blinco, J. P.; Inglis, A. J.; Bruns, M; Barner-Kowollik, C. Photoclickable Surfaces for Profluorescent Covalent Polymer Coatings. Adv. Funct. Mater. 2012, 22, 304–312.

    Google Scholar 

  121. Pauloehrl, T.; Delaittre, G.; Winkler, V.; Welle, A.; Bruns, M.; Börner, H. G.; Greiner, A. M.; Bastmeyer, M; Barner-Kowollik, C. Adding Spatial Control to Click Chemistry: Phototriggered Diels–Alder Surface (Bio)functionalization at Ambient Temperature. Angew. Chem. Int. Ed. 2012, 51, 1071–1074.

    Google Scholar 

  122. Richter, B.; Pauloehrl, T.; Kaschke, J.; Fichtner, D.; Fischer, J.; Greiner, A. M.; Wedlich, D.; Wegener, M.; Delaittre, G.; Barner-Kowollik, C.; Bastmeyer, M. Three-Dimensional Microscaffolds Exhibiting Spatially Resolved Surface Chemistry. Adv. Mater. 2013, 25, 6117–6122.

    Google Scholar 

  123. Shaw, D.; Shoichet, M. S. Toward Spinal Cord Injury Repair Strategies: Peptide Surface Modification of Expanded Poly(Tetrafluoroethylene) Fibers for Guided Neurite Outgrowth In Vitro. J Craniofac Surg. 2003, 14, 308–316.

    Google Scholar 

  124. Kantlehner, M.; Finsinger, D.; Meyer, J.; Schaffner, P.; Jonczyk, A.; Diefenbach, B.; Nies, B.; Kessler, H. Selective RGD-Mediated Adhesion of Osteoblasts at Surfaces of Implants. Angew. Chem. Int. Ed. 1999, 38, 560–562.

    Google Scholar 

  125. Kantlehner, M.; Schaffner, P.; Finsinger, D.; Meyer, J.; Jonczyk, A.; Diefenbach, B.; Nies, B.; Hölzemann, G.; Goodman, S. L; Kessler, H. Surface Coating with Cyclic RGD Peptides Stimulates Osteoblast Adhesion and Proliferation as well as Bone Formation. ChemBioChem 2000, 1, 107–114.

    Google Scholar 

  126. Auernheimer, J.; Dahmen, C.; Hersel, U.; Bausch, A; Kessler, H. Photoswitched Cell Adhesion on Surfaces with RGD Peptides. J. Am. Chem. Soc. 2005, 127, 16107–16110.

    Google Scholar 

  127. Edlund, U.; Källrot, M.; Albertsson, A.-C. Single-Step Covalent Functionalization of Polylactide Surfaces. J. Am. Chem. Soc. 2005, 127, 8865–8871.

    Google Scholar 

  128. Wang, C.; Ren, P.-F.; Huang, X.-J.; Wu, J.; Xu, Z.-K. Surface glycosylation of polymer membrane by thiol-yne click chemistry for affinity adsorption of lectin. Chem. Commun. 2011, 47, 3930–3932.

    Google Scholar 

  129. Larsen, E. K. U.; Mikkelsen, M. B. L.; Larsen, N. B. Facile Photoimmobilization of Proteins onto Low-Binding PEG-Coated Polymer Surfaces. Biomacromolecules 2014, 15, 894–899.

    Google Scholar 

  130. Li, J.; Ding, M.; Fu, Q.; Tan, H.; Xie, X; Zhong, Y. A novel strategy to graft RGD peptide on biomaterials surfaces for endothelization of small-diamater vascular grafts and tissue engineering blood vessel. J. Mater. Sci.: Mater. Med. 2008, 19, 2595–2603.

    Google Scholar 

  131. Xu, J.; Ma, Y.; Xie, J.; Xu, F. J.; Yang, W. Functionalization of polymeric surfaces by simple photoactivation of CH bonds. J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 2755–2760.

    Google Scholar 

  132. Li, C. Y.; Xu, F. J.; Yang, W. T. Simple Strategy to Functionalize Polymeric Substrates via Surface-Initiated ATRP for Biomedical Applications. Langmuir 2012, 29, 1541–1550.

    Google Scholar 

  133. Guillaneuf, Y.; Bertin, D.; Gigmes, D.; Versace, D.-L.; Lalevée, J.; Fouassier, J.-P. Toward Nitroxide-Mediated Photopolymerization. Macromolecules 2010, 43, 2204–2212.

    Google Scholar 

  134. Huebsch, J. B.; Fields, G. B.; Triebes, T. G.; Mooradian, D. L. Photoreactive analog of peptide FN-C/H-V from the carboxy-terminal heparin-binding domains of fibronectin supports endothelial cell adhesion and spreading on biomaterial surfaces. J. Biomed. Mater. Res. 1996, 31, 555–567.

    Google Scholar 

  135. Mizutani, M.; Arnold, S. C.; Matsuda, T. Liquid, Phenylazide-End-Capped Copolymers of ε-Caprolactone and Trimethylene Carbonate: Preparation, Photocuring Characteristics, and Surface Layering. Biomacromolecules 2002, 3, 668–675.

    Google Scholar 

  136. Lin, Y.-S.; Wang, S.-S.; Chung, T.-W.; Wang, Y.-H.; Chiou, S.-H.; Hsu, J.-J.; Chou, N.-K.; Hsieh, K.-H.; Chu, S.-H. Growth of endothelial cells on different concentrations of Gly-Arg-Gly-Asp photochemically grafted in polyethylene glycol modified polyurethane. Artificial Organs 2001, 25, 617–621.

    Google Scholar 

  137. Ortega, F. J.; Banuls, M.-J.; Sanza, F. J.; Laguna, M. F.; Holgado, M.; Casquel, R.; Barrios, C. A.; Lopez-Romero, D.; Maquieira, A.; Puchades, R. Development of a versatile biotinylated material based on SU-8. J. Mater. Chem. B 2013, 1, 2750–2756.

    Google Scholar 

  138. Chevolot, Y.; Martins, J.; Milosevic, N.; Léonard, D.; Zeng, S.; Malissard, M.; Berger, E. G.; Maier, P.; Mathieu, H. J.; Crout, D. H. G.; Sigrist, H. Immobilisation on polystyrene of diazirine derivatives of mono- and disaccharides: biological activities of modified surfaces. Bioorg. Med. Chem. 2001, 9, 2943–2953.

    Google Scholar 

  139. Kolodziej, C. M.; Maynard, H. D. Electron-Beam Lithography for Patterning Biomolecules at the Micron and Nanometer Scale. Chem. Mater. 2011, 24, 774–780.

    Google Scholar 

  140. Sun, H.; Wirsen, A.; Albertsson, A.-C. Electron beam-induced graft polymerization of acrylic acid and immobilization of arginine-glycine-aspartic acid-containing peptide onto nanopatterned polycaprolactone. Biomacromolecules 2004, 5, 2275–2280.

    Google Scholar 

  141. Bozzi, A.; Chapiro, A. Synthesis of perm-selective membranes by grafting acrylic acid into air-irradiated Teflon-FEP films. Int. J. Radiat. Appl. Instrum. C Radiat. Phys. Chem. 1988, 32, 193–196.

    Google Scholar 

  142. Sipehia, R.; Chawla, A. S.; Chang, T. M. S. Enhanced albumin binding to polypropylene beads via anhydrous ammonia gaseous plasma. Biomaterials 1986, 7, 471–473.

    Google Scholar 

  143. Sipehia, R.; Chawla, A. S.; Daka, J.; Chang, T. M. S. Immobilization of enzymes on polypropylene bead surfaces by anhydrous ammonia gaseous plasma technique. J. Biomed. Mater. Res. 1988, 22, 417–422.

    Google Scholar 

  144. Jeong, S. P.; Hong, D.; Kang, S. M.; Choi, I. S.; Lee, J. K. Polymeric Functionalization of Cyclic Olefin Copolymer Surfaces with Nonbiofouling Poly(oligo(Ethylene Glycol) Methacrylate). Asian J. Org. Chem. 2013, 2, 568–571.

    Google Scholar 

  145. Barish, J. A.; Goddard, J. M. Topographical and chemical characterization of polymer surfaces modified by physical and chemical processes. J. Appl. Polym. Sci. 2011, 120, 2863–2871.

    Google Scholar 

  146. Kochkodan, V.; Johnson, D. J.; Hilal, N. Polymeric membranes: Surface modification for minimizing (bio)colloidal fouling. Adv. Colloid Interface Sci. 2014, 206, 116–140.

    Google Scholar 

  147. Yang, R.; Asatekin, A.; Gleason, K. K. Design of conformal, substrate-independent surface modification for controlled protein adsorption by chemical vapor deposition (CVD). Soft Matter 2012, 8, 31–43.

    Google Scholar 

  148. Leckband, D.; Sheth, S.; Halperin, A. Grafted poly(ethylene oxide) brushes as nonfouling surface coatings. J. Biomater. Sci., Polym. Ed. 1999, 10, 1125–1147.

    Google Scholar 

  149. Hucknall, A.; Rangarajan, S.; Chilkoti, A. In Pursuit of Zero: Polymer Brushes that Resist the Adsorption of Proteins. Adv. Mater. 2009, 21, 2441–2446.

    Google Scholar 

  150. Tauhardt, L.; Kempe, K.; Gottschaldt, M.; Schubert, U. S. Poly(2-oxazoline) functionalized surfaces: from modification to application. Chem. Soc. Rev. 2013, 42, 7998–8011.

    Google Scholar 

  151. Schlenoff, J. B. Zwitteration: Coating Surfaces with Zwitterionic Functionality to Reduce Nonspecific Adsorption. Langmuir 2014, 30, 9625–9636.

    Google Scholar 

  152. Handbook of RAFT Polymerization; Barner-Kowollik , C., Ed.; Wiley-VCH Verlag GmbH & Co. KGaA, 2008.

    Google Scholar 

  153. Moad, G.; Rizzardo, E.; Thang, S. H. Toward Living Radical Polymerization. Acc. Chem. Res. 2008, 41, 1133–1142.

    Google Scholar 

  154. Braunecker, W. A.; Matyjaszewski, K. Controlled/living radical polymerization: Features, developments, and perspectives. Prog. Polym. Sci. 2007, 32, 93–146.

    Google Scholar 

  155. Nicolas, J.; Guillaneuf, Y.; Lefay, C.; Bertin, D.; Gigmes, D.; Charleux, B. Nitroxide-mediated polymerization. Prog. Polym. Sci. 2013, 38, 63–235.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Delaittre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Delaittre, G. (2015). Modification of Polymer Surfaces for Biofunctionalization. In: Rodríguez-Hernández, J., Cortajarena, A. (eds) Design of Polymeric Platforms for Selective Biorecognition. Springer, Cham. https://doi.org/10.1007/978-3-319-17061-9_4

Download citation

Publish with us

Policies and ethics