Skip to main content

Patterning and Functionalization of Polymeric Surfaces

  • Chapter
  • First Online:
Design of Polymeric Platforms for Selective Biorecognition

Abstract

The design of polymeric biointerfaces is crucial since interfaces are directly involved in the connection of a synthetic material and a particular biomolecule, microorganism, or cell. A large amount of work has been carried out in order to identify those aspects that need to be considered during the surface design. As a result of this effort, today it is generally admitted that parameters such as topology, surface morphology, physical structure, chemical and biological composition as well as their particular distribution on the surface play a key role on the interaction with the biological environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Castner, D.G. and B.D. Ratner, Biomedical surface science: Foundations to frontiers. Surface Science, 2002. 500(1–3): p. 28–60.

    Google Scholar 

  2. Shekhawat, G., S.H. Tark, and V.P. Dravid, MOSFET-embedded microcantilevers for measuring deflection in biomolecular sensors. Science, 2006. 311(5767): p. 1592–1595.

    Google Scholar 

  3. Cui, Y., et al., Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001. 293(5533): p. 1289–1292.

    Google Scholar 

  4. Christman, K.L., V.D. Enriquez-Rios, and H.D. Maynard, Nanopatterning proteins and peptides. Soft Matter, 2006. 2(11): p. 928–939.

    Google Scholar 

  5. Demidov, V.V., Nanobiosensors and molecular diagnostics: a promising partnership. Expert Review of Molecular Diagnostics, 2004. 4(3): p. 267–268.

    Google Scholar 

  6. Ratner, B.D., The engineering of biomaterials exhibiting recognition and specificity. Journal of Molecular Recognition, 1996. 9(5–6): p. 617–625.

    Google Scholar 

  7. Chen, H., et al., Biocompatible polymer materials: Role of protein–surface interactions. Progress in Polymer Science, 2008. 33(11): p. 1059–1087.

    Google Scholar 

  8. Kingshott, P., et al., Surface modification and chemical surface analysis of biomaterials. Current Opinion in Chemical Biology, 2011. 15(5): p. 667–676.

    Google Scholar 

  9. Alves, N.M., et al., Controlling Cell Behavior Through the Design of Polymer Surfaces. Small, 2010. 6(20): p. 2208–2220.

    Google Scholar 

  10. Alexander, C. and E.N. Vulfson, Spatially functionalized polymer surfaces produced via cell-mediated lithography. Advanced Materials, 1997. 9(9): p. 751–755.

    Google Scholar 

  11. Alfonso, I. and V. Gotor, Biocatalytic and biomimetic aminolysis reactions: useful tools for selective transformations on polyfunctional substrates. Chemical Society Reviews, 2004. 33(4): p. 201–209.

    Google Scholar 

  12. Appendini, P. and J.H. Hotchkiss, Surface modification of poly(styrene) by the attachment of an antimicrobial peptide. Journal of Applied Polymer Science, 2001. 81(3): p. 609–616.

    Google Scholar 

  13. Ariga, K., J.P. Hill, and Q. Ji, Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application. Physical Chemistry Chemical Physics, 2007. 9(19): p. 2319–2340.

    Google Scholar 

  14. Bag, D.S., V.P. Kumar, and S. Maiti, Chemical modification of LDPE film. Journal of Applied Polymer Science, 1999. 71(7): p. 1041–1048.

    Google Scholar 

  15. Blawas, A.S. and W.M. Reichert, Protein patterning. Biomaterials, 1998. 19(7–9): p. 595–609.

    Google Scholar 

  16. Darain, F., K.L. Gan, and S.C. Tjin, Antibody immobilization on to polystyrene substrate-on-chip immunoassay for horse IgG based on fluorescence. Biomedical Microdevices, 2009. 11(3): p. 653–661.

    Google Scholar 

  17. Delamarche, E., Microcontact Printing of Proteins, in Nanobiotechnology. 2005, Wiley-VCH Verlag GmbH & Co. KGaA. p. 31–52.

    Google Scholar 

  18. Fixe, F., et al., Functionalization of poly (methyl methacrylate) (PMMA) as a substrate for DNA microarrays. Nucleic Acids Research, 2004. 32(1).

    Google Scholar 

  19. Glodek, J., et al., Derivatization of fluorinated polymers and their potential use for the construction of biosensors. Sensors and Actuators B-Chemical, 2002. 83(1–3): p. 82–89.

    Google Scholar 

  20. Hu, S.G., C.H. Jou, and M.C. Yang, Surface grafting of polyester fiber with chitosan and the antibacterial activity of pathogenic bacteria. Journal of Applied Polymer Science, 2002. 86(12): p. 2977–2983.

    Google Scholar 

  21. Lee, K.B., et al., Protein nanoarrays generated by dip-pen nanolithography. Science, 2002. 295(5560): p. 1702–1705.

    Google Scholar 

  22. Tao, G.L., et al., Surface functionalized polypropylene: Synthesis, characterization, and adhesion properties. Macromolecules, 2001. 34(22): p. 7672–7679.

    Google Scholar 

  23. Volcke, C., et al., Protein pattern transfer for biosensor applications. Biosensors and Bioelectronics, 2010. 25(6): p. 1295–1300.

    Google Scholar 

  24. Zhang, H., et al., Biofunctionalized nanoarrays of inorganic structures prepared by dip-pen nanolithography. Nanotechnology, 2003. 14(10): p. 1113–1117.

    Google Scholar 

  25. Zhang, J. and Y. Han, Active and responsive polymer surfaces. Chemical Society Reviews, 2010. 39(2): p. 676–693.

    Google Scholar 

  26. Pethrick, R.A., Polymer surface modification and characterization, edited by Chi-Ming Chan. Carl Hanser Verlag, Munich, Vienna, New York, 1993.

    Google Scholar 

  27. Sheng, E., et al., Effects of the chromic-acid etching on propylene polymer surfaces. Journal of Adhesion Science and Technology, 1995. 9(1): p. 47–60.

    Google Scholar 

  28. Eriksson, J.C., et al., Characterization of kmno4 h2so4-oxidized polyethylene surfaces by means of esca and 45ca2 + adsorption. Journal of Colloid and Interface Science, 1984. 100(2): p. 381–392.

    Google Scholar 

  29. Bandopadhay, D., A.B. Panda, and P. Pramanik, Surface modification of LDPE film by chemical processes with Ni2 + and ammonium persulfate. Journal of Applied Polymer Science, 2001. 82(2): p. 406–415.

    Google Scholar 

  30. Holmberg, K. and H. Hyden, Methods of immobilization of proteins to polymethylmethacrylate. Preparative Biochemistry, 1985. 15(5): p. 309–319.

    Google Scholar 

  31. Zhu, Y., Z. Mao, and C. Gao, Aminolysis-based surface modification of polyesters for biomedical applications. Rsc Advances, 2013. 3(8): p. 2509–2519.

    Google Scholar 

  32. Zhu, Y.B., et al., Endothelium regeneration on luminal surface of polyurethane vascular scaffold modified with diamine and covalently grafted with gelatin. Biomaterials, 2004. 25(3): p. 423–430.

    Google Scholar 

  33. Goddard, J.M. and J.H. Hotchkiss, Polymer surface modification for the attachment of bioactive compounds. Progress in Polymer Science, 2007. 32(7): p. 698–725.

    Google Scholar 

  34. Ulman, A., Formation and structure of self-assembled monolayers. Chemical Reviews, 1996. 96(4): p. 1533–1554.

    Google Scholar 

  35. Whitesides, G.M. and P.E. Laibinis, Wet chemical approaches to the characterization of organic surfaces: self-assembled monolayers, wetting, and the physical-organic chemistry of the solid-liquid interface. Langmuir, 1990. 6(1): p. 87–96.

    Google Scholar 

  36. Dejeu, J., et al., Improvement of Robotic Micromanipulations Using Chemical Functionalisations, in Precision Assembly Technologies and Systems, S. Ratchev, Editor. 2010. p. 215–221.

    Google Scholar 

  37. Chrisey, D.B., et al., Laser Deposition of Polymer and Biomaterial Films. Chemical Reviews, 2003. 103(2): p. 553–576.

    Google Scholar 

  38. Schiller, S., et al., Chemical Structure and Properties of Plasma-Polymerized Maleic Anhydride Films. Chemistry of Materials, 2001. 14(1): p. 235–242.

    Google Scholar 

  39. Calderon, J.G. and R.B. Timmons, Surface Molecular Tailoring via Pulsed Plasma-Generated Acryloyl Chloride Polymers: Synthesis and Reactivity. Macromolecules, 1998. 31(10): p. 3216–3224.

    Google Scholar 

  40. Mao, Y. and K.K. Gleason, Hot Filament Chemical Vapor Deposition of Poly(glycidyl methacrylate) Thin Films Using tert-Butyl Peroxide as an Initiator. Langmuir, 2004. 20(6): p. 2484–2488.

    Google Scholar 

  41. Lahann, J., Vapor-based polymer coatings for potential biomedical applications. Polymer International, 2006. 55(12): p. 1361–1370.

    Google Scholar 

  42. Lahann, J., Reactive polymer coatings for biomimetic surface engineering. Chemical Engineering Communications, 2006. 193(11): p. 1457–1468.

    Google Scholar 

  43. Bally, F., et al., Co-immobilization of Biomolecules on Ultrathin Reactive Chemical Vapor Deposition Coatings Using Multiple Click Chemistry Strategies. Acs Applied Materials & Interfaces, 2013. 5(19): p. 9262–9268.

    Google Scholar 

  44. Nandivada, H., et al., Reactive polymer coatings that “click”". Angewandte Chemie-International Edition, 2006. 45(20): p. 3360–3363.

    Google Scholar 

  45. Nandivada, H., et al., Reactive Polymer Coatings for Biological Applications. Polymers for Biomedical Applications, 2008. 977: p. 283–298.

    Google Scholar 

  46. Lahann, J., et al., Universal approach towards r-Hirudin derivatives with high anti-thrombin activity based on chemical differentiation of primary amino groups. Macromolecular Bioscience, 2002. 2(2): p. 82–87.

    Google Scholar 

  47. Nandivada, H., H.Y. Chen, and J. Lahann, Vapor-based synthesis of poly (4-formyl-p-xylylene)-co-(p-xylylene) and its use for biomimetic surface modifications. Macromolecular Rapid Communications, 2005. 26(22): p. 1794–1799.

    Google Scholar 

  48. Chu, P.K., et al., Plasma-surface modification of biomaterials. Materials Science & Engineering R-Reports, 2002. 36(5–6): p. 143–206.

    Google Scholar 

  49. Chtaib, M., et al., Polymer surface reactivity enhancement by ultraviolet arf laser irradiation—an x-ray photoelectron-spectroscopy study of polytetrafluoroethylene and polyethyleneterephthalate ultraviolet treated surfaces. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 1989. 7(6): p. 3233–3237.

    Google Scholar 

  50. Rabek, J.F., et al., Photoozonization of polypropylene oxidative reactions caused by ozone and atomic oxygen on polymer surfaces. Acs Symposium Series, 1988. 364: p. 187–200.

    Google Scholar 

  51. Chtaib, M., et al., Polyimide surface degradation—x-ray photoelectron spectroscopic study under uv-pulsed laser irradiation. Acs Symposium Series, 1990. 440: p. 161–169.

    Google Scholar 

  52. Marletta, G., Ion-Beam Modification of Polymer Surfaces for Biological Applications, in Materials Science with Ion Beams, H. Bernas, Editor. 2010. p. 345–369.

    Google Scholar 

  53. Dunn, D.S., J.L. Grant, and D.J. McClure, Texturing of polyimide films during o-2/cf4 sputter etching. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 1989. 7(3): p. 1712–1718.

    Google Scholar 

  54. Grant, J.L., D.S. Dunn, and D.J. McClure, Argon and oxygen sputter etching of polystyrene, polypropylene, and poly(ethylene-terephthalate) thin-films. Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films, 1988. 6(4): p. 2213–2220.

    Google Scholar 

  55. Kellogg, G.J., et al., Observed surface energy effects in confined diblock copolymers. Physical Review Letters, 1996. 76(14): p. 2503–2506.

    Google Scholar 

  56. Walton, D.G. and A.M. Mayes, Entropically driven segregation in blends of branched and linear polymers. Physical Review E, 1996. 54(3): p. 2811–2815.

    Google Scholar 

  57. Jalbert, C., et al., Molecular-weight dependence and end-group effects on the surface-tension of poly(dimethylsiloxane). Macromolecules, 1993. 26(12): p. 3069–3074.

    Google Scholar 

  58. Hunt, M.O., et al., End-functionalized polymers.1. synthesis and characterization of perfluoroalkyl-terminated polymers via chorosilane derivatives. Macromolecules, 1993. 26(18): p. 4854–4859.

    Google Scholar 

  59. Linton, R.W., et al., Time-of-flight secondary-ion mass-spectrometric analysis of polymer surfaces and additives. Surface and Interface Analysis, 1993. 20(12): p. 991–999.

    Google Scholar 

  60. Hopkinson, I., et al., Investigation of surface enrichment in isotopic mixtures of poly(methyl methacrylate). Macromolecules, 1995. 28(2): p. 627–635.

    Google Scholar 

  61. Elman, J.F., et al., A neutron reflectivity investigation of surface and interface segregation of polymer functional end-groups. Macromolecules, 1994. 27(19): p. 5341–5349.

    Google Scholar 

  62. Jalbert, C.J., et al., Surface depletion of end-groups in amine-terminated poly(dimethylsiloxane). Macromolecules, 1994. 27(9): p. 2409–2413.

    Google Scholar 

  63. Xu, Y., M. Takai, and K. Ishihara, Protein adsorption and cell adhesion on cationic, neutral, and anionic 2-methacryloyloxyethyl phosphorylcholine copolymer surfaces. Biomaterials, 2009. 30(28): p. 4930–4938.

    Google Scholar 

  64. Nyamjav, D. and A. Ivanisevic, Alignment of long DNA molecules on templates generated via dip-pen nanolithography. Advanced Materials, 2003. 15(21): p. 1805–1809.

    Google Scholar 

  65. Nyamjav, D. and A. Ivanisevic, Templates for DNA-templated Fe3O4 nanoparticles. Biomaterials, 2005. 26(15): p. 2749–2757.

    Google Scholar 

  66. Valiokas, R., et al., Selective recruitment of membrane protein complexes onto gold substrates patterned by dip-pen nanolithography. Langmuir, 2006. 22(8): p. 3456–3460.

    Google Scholar 

  67. Vega, R.A., et al., Nanoarrays of single virus particles. Angewandte Chemie-International Edition, 2005. 44(37): p. 6013–6015.

    Google Scholar 

  68. Decher, G. and J.D. Hong, Buildup of ultrathin multilayer films by a self-assembly process.1. consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces. Makromolekulare Chemie-Macromolecular Symposia, 1991. 46: p. 321–327.

    Google Scholar 

  69. Decher, G., et al., Layer-by-layer adsorbed films of polyelectrolytes, proteins or dna. Abstracts of Papers of the American Chemical Society, 1993. 205: p. 334–POLY.

    Google Scholar 

  70. Hong, J.D., et al., Layer-by-layer deposited multilayer assemblies of polyelectrolytes and proteins—from ultrathin films to protein arrays, in Trends in Colloid and Interface Science Vii, P. Laggner and O. Glatter, Editors. 1993. p. 98–102.

    Google Scholar 

  71. Decher, G., et al., New nanocomposite films for biosensors—layer-by-layer adsorbed films of polyelectrolytes, proteins or dna. Biosensors & Bioelectronics, 1994. 9(9–10): p. 677–684.

    Google Scholar 

  72. Ladam, G., et al., Protein adsorption onto auto-assembled polyelectrolyte films. Biomolecular Engineering, 2002. 19(2–6): p. 273–280.

    Google Scholar 

  73. Voegel, J.C., G. Decher, and P. Schaaf, Polyelectrolyte multilayer films in the biotechnology field. Actualite Chimique, 2003(11–12): p. 30–38.

    Google Scholar 

  74. Richert, L., et al., Improvement of stability and cell adhesion properties of polyelectrolyte multilayer films by chemical cross-linking. Biomacromolecules, 2004. 5(2): p. 284–294.

    Google Scholar 

  75. Izquierdo, A., et al., Dipping versus spraying: Exploring the deposition conditions for speeding up layer-by-layer assembly. Langmuir, 2005. 21(16): p. 7558–7567.

    Google Scholar 

  76. Matsusaki, M., et al., Layer-by-Layer Assembly Through Weak Interactions and Their Biomedical Applications. Advanced Materials, 2012. 24(4): p. 454–474.

    Google Scholar 

  77. Matsusaki, M., et al., Fabrication of celtular multilayers with nanometer-sized extracellular matrix films. Angewandte Chemie-International Edition, 2007. 46(25): p. 4689–4692.

    Google Scholar 

  78. Moy, V.T., E.L. Florin, and H.E. Gaub, Intermolecular forces and energies between ligands and receptors. Science, 1994. 266(5183): p. 257–259.

    Google Scholar 

  79. Hyun, J., et al., Molecular recognition-mediated fabrication of protein nanostructures by dip-pen lithography. Nano Letters, 2002. 2(11): p. 1203–1207.

    Google Scholar 

  80. Häußling, L., et al., Surface functionalization and surface recognition: Plasmon optical detection of molecular recognition at self assembled monolayers. Makromolekulare Chemie. Macromolecular Symposia, 1991. 46(1): p. 145–155.

    Google Scholar 

  81. Faucheux, N., et al., Self-assembled monolayers with different terminating groups as model substrates for cell adhesion studies. Biomaterials, 2004. 25(14): p. 2721–2730.

    Google Scholar 

  82. Desai, S., et al., Tailor-made functional surfaces: potential elastomeric biomaterials I. Journal of Biomaterials Science-Polymer Edition, 2003. 14(12): p. 1323–1338.

    Google Scholar 

  83. Norberg, O., et al., Photo-Click Immobilization of Carbohydrates on Polymeric Surfaces-A Quick Method to Functionalize Surfaces for Biomolecular Recognition Studies. Bioconjugate Chemistry, 2009. 20(12): p. 2364–2370.

    Google Scholar 

  84. Situma, C., et al., UV patterning of high density oligonugleotide microarrays in poly(methyl)methacrylate (PMMA) microfluidic devices. Abstracts of Papers of the American Chemical Society, 2004. 228: p. U118–U118.

    Google Scholar 

  85. Situma, C., et al., Fabrication of DNA microarrays onto poly(methyl methacrylate) with ultraviolet patterning and microfluidics for the detection of low-abundant point mutations. Analytical Biochemistry, 2005. 340(1): p. 123–135.

    Google Scholar 

  86. Nahar, P., A. Naqvi, and S.F. Basir, Sunlight-mediated activation of an inert polymer surface for covalent immobilization of a protein. Analytical Biochemistry, 2004. 327(2): p. 162–164.

    Google Scholar 

  87. Delaittre, G., et al., Chemical approaches to synthetic polymer surface biofunctionalization for targeted cell adhesion using small binding motifs. Soft Matter, 2012. 8(28): p. 7323–7347.

    Google Scholar 

  88. Parsonage, E., et al., Adsorption of poly(2-vinylpyridine) poly(styrene) block copolymers from toluene solutions. Macromolecules, 1991. 24(8): p. 1987–1995.

    Google Scholar 

  89. Marra, J. and M.L. Hair, Interactions between 2 adsorbed layers of poly(ethylene oxide) polystyrene diblock copolymers in heptane toluene mixtures. Colloids and Surfaces, 1989. 34(3): p. 215–226.

    Google Scholar 

  90. Guzonas, D., D. Boils, and M.L. Hair, Surface force measurements of polystyrene-block-poly(ethylene oxide) adsorbed from a nonselective solvent on mica. Macromolecules, 1991. 24(11): p. 3383–3387.

    Google Scholar 

  91. Hair, M.L., D. Guzonas, and D. Boils, Adsorption of polystyrene-b-poly(ethylene oxide) on mica—scaling concepts. Macromolecules, 1991. 24(1): p. 341–342.

    Google Scholar 

  92. Guzonas, D.A., et al., Role of block size asymmetry on the adsorbed amount of polystyrene-b-poly(ethylene oxide) on mica surfaces from toluene. Macromolecules, 1992. 25(9): p. 2434–2441.

    Google Scholar 

  93. Zhao, B. and W.J. Brittain, Polymer brushes: surface-immobilized macromolecules. Progress in Polymer Science, 2000. 25(5): p. 677–710.

    Google Scholar 

  94. Massia, S.P. and J.A. Hubbell, Covalently attached grgd on polymer surfaces promotes biospecific adhesion of mammalian-cells. Annals of the New York Academy of Sciences, 1990. 589: p. 261–270.

    Google Scholar 

  95. Matsuda, T., et al., Development of a novel artificial matrix with cell adhesion peptides for cell culture and artificial and hybrid organs. ASAIO transactions/American Society for Artificial Internal Organs, 1989. 35(3): p. 677–9.

    Google Scholar 

  96. Lee, J.W., et al., Estimation of cell proliferation by various peptide coating at the PPF/DEF 3D scaffold. Microelectronic Engineering, 2009. 86(4–6): p. 1451–1454.

    Google Scholar 

  97. Lee, J.W., et al., Carboxylic acid-functionalized conductive polypyrrole as a bioactive platform for cell adhesion. Biomacromolecules, 2006. 7(6): p. 1692–1695.

    Google Scholar 

  98. Biltresse, S., M. Attolini, and J. Marchand-Brynaert, Cell adhesive PET membranes by surface grafting of RGD peptidomimetics. Biomaterials, 2005. 26(22): p. 4576–4587.

    Google Scholar 

  99. Gabriel, M., et al., Direct grafting of RGD-motif-containing peptide on the surface of polycaprolactone films. Journal of Biomaterials Science-Polymer Edition, 2006. 17(5): p. 567–577.

    Google Scholar 

  100. Hu, Y.H., et al., Porous polymer scaffolds surface-modified with arginine-glycine-aspartic acid enhance bone cell attachment and differentiation in vitro. Journal of Biomedical Materials Research Part A, 2003. 64A(3): p. 583–590.

    Google Scholar 

  101. Sanchez, M., et al., Synthesis of hemocompatible materials.1. surface modification of polyurethanes based on poly(chloroalkylvinylether)s by rgd fragments. Clinical Materials, 1994. 15(4): p. 253–258.

    Google Scholar 

  102. Guan, J.J., et al., Biodegradable poly(ether ester urethane)urea elastomers based on poly(ether ester) triblock copolymers and putrescine: synthesis, characterization and cytocompatibility. Biomaterials, 2004. 25(1): p. 85–96.

    Google Scholar 

  103. Kondoh, A., K. Makino, and T. Matsuda, 2-dimensional artificial extracellular-matrix—bioadhesive peptide-immobilized surface design. Journal of Applied Polymer Science, 1993. 47(11): p. 1983–1988.

    Google Scholar 

  104. Sun, H. and S. Onneby, Facile polyester surface functionalization via hydrolysis and cell-recognizing peptide attachment. Polymer International, 2006. 55(11): p. 1336–1340.

    Google Scholar 

  105. Goddard, J.M., J.N. Talbert, and J.H. Hotchkiss, Covalent attachment of lactase to low-density polyethylene films. Journal of Food Science, 2007. 72(1): p. E36–E41.

    Google Scholar 

  106. Dominick, W.D., et al., Covalent immobilization of proteases and nucleases to poly(methylmethacrylate). Analytical and Bioanalytical Chemistry, 2003. 376(3): p. 349–354.

    Google Scholar 

  107. Biederman, H., et al., Characterization of glow-discharge-treated cellulose acetate membrane surfaces for single-layer enzyme electrode studies. Journal of Applied Polymer Science, 2001. 81(6): p. 1341–1352.

    Google Scholar 

  108. Rejikumar, S. and S. Devi, Immobilization of beta-galactosidase onto polymeric supports. Journal of Applied Polymer Science, 1995. 55(6): p. 871–878.

    Google Scholar 

  109. Gonzalez-Saiz, J.M. and C. Pizarro, Polyacrylamide gels as support for enzyme immobilization by entrapment. Effect of polyelectrolyte carrier, pH and temperature on enzyme action and kinetics parameters. European Polymer Journal, 2001. 37(3): p. 435–444.

    Google Scholar 

  110. Godjevargova, T., R. Dayal, and I. Marinov, Simultaneous covalent immobilization of glucose oxidase and catalase onto chemically modified acrylonitrile copolymer membranes. Journal of Applied Polymer Science, 2004. 91(6): p. 4057–4063.

    Google Scholar 

  111. Bahulekar, R., N.R. Ayyangar, and S. Ponrathnam, POLYETHYLENEIMINE IN IMMOBILIZATION OF BIOCATALYSTS. Enzyme and Microbial Technology, 1991. 13(11): p. 858–868.

    Google Scholar 

  112. Qu, H.Y., et al., Stable microstructured network for protein patterning on a plastic microfluidic channel: Strategy and characterization of on-chip enzyme microreactors. Analytical Chemistry, 2004. 76(21): p. 6426–6433.

    Google Scholar 

  113. Henry, A.C., et al., Surface modification of poly(methyl methacrylate) used in the fabrication of microanalytical devices. Analytical Chemistry, 2000. 72(21): p. 5331–5337.

    Google Scholar 

  114. Fixe, F., et al., One-step immobilization of aminated and thiolated DNA onto poly(methylmethacrylate) (PMMA) substrates. Lab on a Chip, 2004. 4(3): p. 191–195.

    Google Scholar 

  115. Fuentes, M., et al., Directed covalent immobilization of aminated DNA probes on aminated plates. Biomacromolecules, 2004. 5(3): p. 883–888.

    Google Scholar 

  116. Tran, L.D., et al., A polytyramine film for covalent immobilization of oligonucleotides and hybridization. Synthetic Metals, 2003. 139(2): p. 251–262.

    Google Scholar 

  117. Ketomaki, K., et al., Hybridization properties of support-bound oligonucleotides: The effect of the site of immobilization on the stability and selectivity of duplex formation. Bioconjugate Chemistry, 2003. 14(4): p. 811–816.

    Google Scholar 

  118. Niu, X.F., et al., Arg-gly-Asp (RGD) modified biomimetic polymeric materials. Journal of Materials Science & Technology, 2005. 21(4): p. 571–576.

    Google Scholar 

  119. Sebra, R.P., et al., Surface grafted antibodies: Controlled architecture permits enhanced antigen detection. Langmuir, 2005. 21(24): p. 10907–10911.

    Google Scholar 

  120. Chang, C.-C., et al., Comparative Assessment of Oriented Antibody Immobilization on Surface Plasmon Resonance Biosensing. Journal of the Chinese Chemical Society, 2013. 60(12): p. 1449–1456.

    Google Scholar 

  121. Jackson, J.M., et al., UV activation of polymeric high aspect ratio microstructures: ramifications in antibody surface loading for circulating tumor cell selection. Lab on a Chip, 2014. 14(1): p. 106–117.

    Google Scholar 

  122. Feyssa, B., et al., Patterned Immobilization of Antibodies within Roll-to-Roll Hot Embossed Polymeric Microfluidic Channels. Plos One, 2013. 8(7).

    Google Scholar 

  123. Sung, D., et al., High-density immobilization of antibodies onto nanobead-coated cyclic olefin copolymer plastic surfaces for application as a sensitive immunoassay chip. Biomedical Microdevices, 2013. 15(4): p. 691–698.

    Google Scholar 

  124. Chebil, S., et al., Polypyrrole functionalized with new copper complex as platform for His-tag antibody immobilization and direct antigen detection. Sensors and Actuators B-Chemical, 2013. 185: p. 762–770.

    Google Scholar 

  125. Shin, H., S. Jo, and A.G. Mikos, Biomimetic materials for tissue engineering. Biomaterials, 2003. 24(24): p. 4353–4364.

    Google Scholar 

  126. Goddard, J.M. and J.H. Hotchkiss, Tailored functionalization of low-density polyethylene surfaces. Journal of Applied Polymer Science, 2008. 108(5): p. 2940–2949.

    Google Scholar 

  127. Kim, Y.J., et al., Surface characterization and in vitro blood compatibility of poly(ethylene terephthalate) immobilized with insulin and/or heparin using plasma glow discharge. Biomaterials, 2000. 21(2): p. 121–130.

    Google Scholar 

  128. Byun, Y., H.A. Jacobs, and S.W. Kim, Heparin surface immobilization through hydrophilic spacers—thrombin and antithrombin-iii binding-kinetics. Journal of Biomaterials Science-Polymer Edition, 1994. 6(1): p. 1–13.

    Google Scholar 

  129. de Leon, A.S., et al., Control of the chemistry outside the pores in honeycomb patterned films. Polymer Chemistry, 2013. 4(14): p. 4024–4032.

    Google Scholar 

  130. Munoz-Bonilla, A., et al., Fabrication of Honeycomb-Structured Porous Surfaces Decorated with Glycopolymers. Langmuir, 2010. 26(11): p. 8552–8558.

    Google Scholar 

  131. Yang, J.M., et al., Wettability and antibacterial assessment of chitosan containing radiation-induced graft nonwoven fabric of polypropylene-g-acrylic acid. Journal of Applied Polymer Science, 2003. 90(5): p. 1331–1336.

    Google Scholar 

  132. Yang, M.C. and W.C. Lin, Protein adsorption and platelet adhesion of polysulfone membrane immobilized with chitosan and heparin conjugate. Polymers for Advanced Technologies, 2003. 14(2): p. 103–113.

    Google Scholar 

  133. Xu, F.J., et al., Heparin-coupled poly(poly(ethylene glycol) monomethacrylate)-Si(111) hybrids and their blood compatible surfaces. Biomacromolecules, 2005. 6(3): p. 1759–1768.

    Google Scholar 

  134. Toyoshima, M., et al., Biological specific recognition of glycopolymer-modified interfaces by RAFT living radical polymerization. Polymer Journal, 2010. 42(2): p. 172–178.

    Google Scholar 

  135. Reynolds, M., et al., Influence of ligand presentation density on the molecular recognition of mannose-functionalised glyconanoparticles by bacterial lectin BC2 L-A. Glycoconjugate Journal, 2013. 30(8): p. 747–757.

    Google Scholar 

  136. Massia, S.P., J. Stark, and D.S. Letbetter, Surface-immobilized dextran limits cell adhesion and spreading. Biomaterials, 2000. 21(22): p. 2253–2261.

    Google Scholar 

  137. Reddy, R.M., A. Srivastava, and A. Kumar, Monosaccharide-Responsive Phenylboronate-Polyol Cell Scaffolds for Cell Sheet and Tissue Engineering Applications. Plos One, 2013. 8(10).

    Google Scholar 

  138. Bertok, T., et al., Electrochemical lectin based biosensors as a label-free tool in glycomics. Microchimica Acta, 2013. 180(1–2): p. 1–13.

    Google Scholar 

  139. Vega, E., et al., Synthesis of chiral mesoporous silicas with oligo(saccharide) surfaces and their use in separation of stereoisomers. Journal of Colloid and Interface Science, 2011. 359(2): p. 542–544.

    Google Scholar 

  140. Kejik, Z., et al., Selective recognition of a saccharide-type tumor marker with natural and synthetic ligands: a new trend in cancer diagnosis. Analytical and Bioanalytical Chemistry, 2010. 398(5): p. 1865–1870.

    Google Scholar 

  141. Tseng, T.T.C., J. Yao, and W.-C. Chan, Selective enzyme immobilization on arrayed microelectrodes for the application of sensing neurotransmitters. Biochemical Engineering Journal, 2013. 78: p. 146–153.

    Google Scholar 

  142. Palacio, M.L.B. and B. Bhushan, Enzyme adsorption on polymer-based confined bioinspired biosensing surface. Journal of Vacuum Science & Technology A, 2012. 30(5).

    Google Scholar 

  143. Muriel-Galet, V., et al., Covalent Immobilization of Lysozyme on Ethylene Vinyl Alcohol Films for Nonmigrating Antimicrobial Packaging Applications. Journal of Agricultural and Food Chemistry, 2013. 61(27): p. 6720–6727.

    Google Scholar 

  144. Khosravi, A., et al., Magnetic labelled horseradish peroxidase-polymer nanoparticles: a recyclable nanobiocatalyst. Journal of the Serbian Chemical Society, 2013. 78(7): p. 921–931.

    Google Scholar 

  145. Fang, Y., et al., Polymer materials for enzyme immobilization and their application in bioreactors. Bmb Reports, 2011. 44(2): p. 87–95.

    Google Scholar 

  146. Dai, Y., et al., Electrospun Nanofiber Membranes as Supports for Enzyme Immobilization and Its Application. Progress in Chemistry, 2010. 22(9): p. 1808–1818.

    Google Scholar 

  147. Wang, Z.-G., et al., Enzyme immobilization on electrospun polymer nanofibers: An overview. Journal of Molecular Catalysis B-Enzymatic, 2009. 56(4): p. 189–195.

    Google Scholar 

  148. Ansari, S.A. and Q. Husain, Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnology Advances, 2012. 30(3): p. 512–523.

    Google Scholar 

  149. Talbert, J.N. and J.M. Goddard, Enzymes on material surfaces. Colloids and Surfaces B: Biointerfaces, 2012. 93(0): p. 8–19.

    Google Scholar 

  150. Tran, D.N. and K.J. Balkus, Jr., Perspective of Recent Progress in Immobilization of Enzymes. Acs Catalysis, 2011. 1(8): p. 956–968.

    Google Scholar 

  151. Leung, K.C.F., et al., Immunoassays using polypeptide conjugate binders with tuned affinity. Expert Review of Molecular Diagnostics, 2010. 10(7): p. 863–867.

    Google Scholar 

  152. Groll, J., et al., Ultrathin Coatings from Isocyanate Terminated Star PEG Prepolymers: Patterning of Proteins on the Layers. Langmuir, 2005. 21(7): p. 3076–3083.

    Google Scholar 

  153. Welle, A., et al., Photo-chemically patterned polymer surfaces for controlled PC-12 adhesion and neurite guidance. Journal of Neuroscience Methods, 2005. 142(2): p. 243–250.

    Google Scholar 

  154. Thissen, H., et al., Nanometer thickness laser ablation for spatial control of cell attachment. Smart Materials and Structures, 2002. 11(5): p. 792.

    Google Scholar 

  155. Tan, J.L., et al., Simple approach to micropattern cells on common culture substrates by tuning substrate wettability. Tissue Engineering, 2004. 10(5–6): p. 865–872.

    Google Scholar 

  156. Yang, M., et al., Lab-on-a-chip for carbon nanotubes based immunoassay detection of Staphylococcal Enterotoxin B (SEB). Lab on a Chip, 2010. 10(8): p. 1011–1017.

    Google Scholar 

  157. Puertas, S., et al., Improving immunosensor performance through oriented immobilization of antibodies on carbon nanotube composite surfaces. Biosensors & Bioelectronics, 2013. 43: p. 274–280.

    Google Scholar 

  158. Sai, V.V.R., et al., Immobilization of antibodies on polyaniline films and its application in a piezoelectric immunosensor. Analytical Chemistry, 2006. 78(24): p. 8368–8373.

    Google Scholar 

  159. Skottrup, P.D., M. Nicolaisen, and A.F. Justesen, Towards on-site pathogen detection using antibody-based sensors. Biosensors & Bioelectronics, 2008. 24(3): p. 339–348.

    Google Scholar 

  160. Moreira, F.T.C., et al., Smart plastic antibody material (SPAM) tailored on disposable screen printed electrodes for protein recognition: Application to myoglobin detection. Biosensors & Bioelectronics, 2013. 45: p. 237–244.

    Google Scholar 

  161. Zhang, M., et al., Immobilization of anti-CD31 antibody on electrospun poly(epsilon-caprolactone) scaffolds through hydrophobins for specific adhesion of endothelial cells. Colloids and Surfaces B-Biointerfaces, 2011. 85(1): p. 32–39.

    Google Scholar 

  162. Badelt-Lichtblau, H., et al., Genetic Engineering of the S-Layer Protein SbpA of Lysinibacillus sphaericus CCM 2177 for the Generation of Functionalized Nanoarrays. Bioconjugate Chemistry, 2009. 20(5): p. 895–903.

    Google Scholar 

  163. Chakraborty, B., et al., Rational design and performance testing of aptamer-based electrochemical biosensors for adenosine. Journal of Electroanalytical Chemistry, 2009. 635(2): p. 75–82.

    Google Scholar 

  164. Cheng, A.K.H., D. Sen, and H.-Z. Yu, Design and testing of aptamer-based electrochemical biosensors for proteins and small molecules. Bioelectrochemistry, 2009. 77(1): p. 1–12.

    Google Scholar 

  165. Han, K., Z. Liang, and N. Zhou, Design Strategies for Aptamer-Based Biosensors. Sensors, 2010. 10(5): p. 4541–4557.

    Google Scholar 

  166. He, P., et al., Label-free electrochemical monitoring of vasopressin in aptamer-based microfluidic biosensors. Analytica Chimica Acta, 2013. 759: p. 74–80.

    Google Scholar 

  167. Wang, R.E., et al., Aptamer-Based Fluorescent Biosensors. Current Medicinal Chemistry, 2011. 18(27): p. 4175–4184.

    Google Scholar 

  168. Khung, Y.L. and D. Narducci, Synergizing nucleic acid aptamers with 1-dimensional nanostructures as label-free field-effect transistor biosensors. Biosensors & Bioelectronics, 2013. 50: p. 278–293.

    Google Scholar 

  169. Su, S., et al., Microgel-based inks for paper-supported biosensing applications. Biomacromolecules, 2008. 9(3): p. 935–941.

    Google Scholar 

  170. Luo, Y., et al., Dual-Aptamer-Based Biosensing of Toxoplasma Antibody. Analytical Chemistry, 2013. 85(17): p. 8354–8360.

    Google Scholar 

  171. Sekhon, S.S., et al., Advances in pathogen-associated molecules detection using Aptamer based biosensors. Molecular & Cellular Toxicology, 2013. 9(4): p. 311–317.

    Google Scholar 

  172. Wang, T., et al., The diagnostic application of aptamer based on polyacrylamide gel electrophoresis and gray analysis. Journal of Gastroenterology and Hepatology, 2013. 28: p. 383–383.

    Google Scholar 

  173. Sharma, S., et al., Nucleic acid aptamer based glycan binders for analytical and diagnostic tools. Irish Journal of Medical Science, 2013. 182: p. S139–S139.

    Google Scholar 

  174. Hong, P., W. Li, and J. Li, Applications of Aptasensors in Clinical Diagnostics. Sensors, 2012. 12(2): p. 1181–1193.

    Google Scholar 

  175. Balamurugan, S., et al., Surface immobilization methods for aptamer diagnostic applications. Analytical and Bioanalytical Chemistry, 2008. 390(4): p. 1009–1021.

    Google Scholar 

  176. Wang, Y., K.-Y. Pu, and B. Liu, Anionic Conjugated Polymer with Aptamer-Functionalized Silica Nanoparticle for Label-Free Naked-Eye Detection of Lysozyme in Protein Mixtures. Langmuir, 2010. 26(12): p. 10025–10030.

    Google Scholar 

  177. Yoon, H., et al., A novel sensor platform based on aptamer-conjugated polypyrrole nanotubes for label-free electrochemical protein detection. Chembiochem, 2008. 9(4): p. 634–641.

    Google Scholar 

  178. Danielsson, B., Artificial receptors, in Biosensing for the 21st Century, R. Renneberg and F. Lisdat, Editors. 2008. p. 97–122.

    Google Scholar 

  179. Zhang, Z., et al., Programmable Hydrogels for Controlled Cell Catch and Release Using Hybridized Aptamers and Complementary Sequences. Journal of the American Chemical Society, 2012. 134(38): p. 15716–15719.

    Google Scholar 

  180. Li, Z., et al., Aptamer-conjugated dendrimer-modified quantum dots for cancer cell targeting and imaging. Materials Letters, 2010. 64(3): p. 375–378.

    Google Scholar 

  181. Jafari, R., et al., Development of oligonucleotide microarray involving plasma polymerized acrylic acid. Thin Solid Films, 2009. 517(19): p. 5763–5768.

    Google Scholar 

  182. Sethi, D., et al., Polymer supported synthesis of aminooxyalkylated oligonucleotides, and some applications in the fabrication of microarrays. Bioorganic & Medicinal Chemistry, 2009. 17(15): p. 5442–5450.

    Google Scholar 

  183. Shishkanova, T.V., et al., Functionalization of PVC membrane with ss oligonucleotides for a potentiometric biosensor. Biosensors & Bioelectronics, 2007. 22(11): p. 2712–2717.

    Google Scholar 

  184. Yan, F., et al., Label-free DNA sensor based on organic thin film transistors. Biosensors & Bioelectronics, 2009. 24(5): p. 1241–1245.

    Google Scholar 

  185. Levicky, R. and A. Horgan, Physicochemical perspectives on DNA microarray and biosensor technologies. Trends in Biotechnology, 2005. 23(3): p. 143–149.

    Google Scholar 

  186. Marie, R., et al., Immobilisation of DNA to polymerised SU-8 photoresist. Biosensors & Bioelectronics, 2006. 21(7): p. 1327–1332.

    Google Scholar 

  187. Patnaik, S., et al., Engineered Polymer-Supported Synthesis of 3 '-Carboxyalkyl-Modified Oligonucleotides and Their Applications in the Construction of Biochips for Diagnosis of the Diseases. Bioconjugate Chemistry, 2012. 23(3): p. 664–670.

    Google Scholar 

  188. Cottenye, N., et al., Oligonucleotide Nanostructured Surfaces: Effect on Escherichia coli Curli Expression. Macromolecular Bioscience, 2008. 8(12): p. 1161–1172.

    Google Scholar 

  189. Andersson, M., et al., Surface attachment of nanoparticles using oligonucleotides. Colloids and Surfaces B-Biointerfaces, 2004. 34(3): p. 165–171.

    Google Scholar 

  190. Ariga, K., et al., Challenges and breakthroughs in recent research on self-assembly. Science and Technology of Advanced Materials, 2008. 9(1).

    Google Scholar 

  191. Sakakibara, K., J.P. Hill, and K. Ariga, Thin-Film-Based Nanoarchitectures for Soft Matter: Controlled Assemblies into Two-Dimensional Worlds. Small, 2011. 7(10): p. 1288–1308.

    Google Scholar 

  192. Ariga, K., et al., Nanoarchitectonics: A Conceptual Paradigm for Design and Synthesis of Dimension-Controlled Functional Nanomaterials. Journal of Nanoscience and Nanotechnology, 2011. 11(1): p. 1–13.

    Google Scholar 

  193. Acharya, S., J.P. Hill, and K. Ariga, Soft Langmuir-Blodgett Technique for Hard Nanomaterials. Advanced Materials, 2009. 21(29): p. 2959–2981.

    Google Scholar 

  194. Gates, B.D., et al., New approaches to nanofabrication: Molding, printing, and other techniques. Chemical Reviews, 2005. 105(4): p. 1171–1196.

    Google Scholar 

  195. Li, L., et al., Achieving lambda/20 Resolution by One-Color Initiation and Deactivation of Polymerization. Science, 2009. 324(5929): p. 910–913.

    Google Scholar 

  196. Schmid, G.M., et al., Step and flash imprint lithography for manufacturing patterned media. Journal of Vacuum Science & Technology B, 2009. 27(2): p. 573–580.

    Google Scholar 

  197. Chung, S.W., et al., Top-down meets bottom-up: Dip-pen nanolithography and DNA-directed assembly of nanoscale electrical circuits. Small, 2005. 1(1): p. 64–69.

    Google Scholar 

  198. Ginger, D.S., H. Zhang, and C.A. Mirkin, The evolution of dip-pen nanolithography. Angewandte Chemie-International Edition, 2004. 43(1): p. 30–45.

    Google Scholar 

  199. Ando, Y., et al., Fabrication of nanostripe surface structure by multilayer film deposition combined with micropatterning. Nanotechnology, 2010. 21(9).

    Google Scholar 

  200. Marrian, C.R.K. and D.M. Tennant, Nanofabrication. Journal of Vacuum Science & Technology A, 2003. 21(5): p. S207–S215.

    Google Scholar 

  201. Yaman, M., et al., Arrays of indefinitely long uniform nanowires and nanotubes. Nature Materials, 2011. 10(7): p. 494–501.

    Google Scholar 

  202. Liddle, J.A. and G.M. Gallatin, Lithography, metrology and nanomanufacturing. Nanoscale, 2011. 3(7): p. 2679–2688.

    Google Scholar 

  203. Smith, J.C., et al., Nanopatterning the chemospecific immobilization of cowpea mosaic virus capsid. Nano Letters, 2003. 3(7): p. 883–886.

    Google Scholar 

  204. Schaffer, E., et al., Electrically induced structure formation and pattern transfer. Nature, 2000. 403(6772): p. 874–877.

    Google Scholar 

  205. Thurn-Albrecht, T., et al., Overcoming interfacial interactions with electric fields. Macromolecules, 2000. 33(9): p. 3250–3253.

    Google Scholar 

  206. Biswas, A., et al., Advances in top–down and bottom–up surface nanofabrication: Techniques, applications & amp; future prospects. Advances in Colloid and Interface Science, 2012. 170(1–2): p. 2–27.

    Google Scholar 

  207. Acikgoz, C., et al., Polymers in conventional and alternative lithography for the fabrication of nanostructures. European Polymer Journal, 2011. 47(11): p. 2033–2052.

    Google Scholar 

  208. Aherne, A., et al., Bacteria-mediated lithography of polymer surfaces. Journal of the American Chemical Society, 1996. 118(36): p. 8771–8772.

    Google Scholar 

  209. Lan, H. and H. Liu, UV-Nanoimprint Lithography: Structure, Materials and Fabrication of Flexible Molds. Journal of Nanoscience and Nanotechnology, 2013. 13(5): p. 3145–3172.

    Google Scholar 

  210. Ito, H., Development of new advanced resist materials for microlithography. Journal of Photopolymer Science and Technology, 2008. 21(4): p. 475–491.

    Google Scholar 

  211. Moon, S.-Y. and J.-M. Kim, Chemistry of photolithographic imaging materials based on the chemical amplification concept. Journal of Photochemistry and Photobiology C-Photochemistry Reviews, 2007. 8(4): p. 157–173.

    Google Scholar 

  212. Nishikuboand, T. and H. Kudo, Recent Development in Molecular Resists for Extreme Ultraviolet Lithography. Journal of Photopolymer Science and Technology, 2011. 24(1): p. 9–18.

    Google Scholar 

  213. Wallraff, G.M. and W.D. Hinsberg, Lithographic Imaging Techniques for the Formation of Nanoscopic Features. Chemical Reviews, 1999. 99(7): p. 1801–1822.

    Google Scholar 

  214. Brunner, T.A., Why optical lithography will live forever. Journal of Vacuum Science & Technology B, 2003. 21(6): p. 2632–2637.

    Google Scholar 

  215. Ito, T. and S. Okazaki, Pushing the limits of lithography. Nature, 2000. 406(6799): p. 1027–1031.

    Google Scholar 

  216. Willson, C.G. and B.C. Trinque, The evolution of materials for the photolithographic process. Journal of Photopolymer Science and Technology, 2003. 16(4): p. 621–627.

    Google Scholar 

  217. Rothschild, M., et al., Liquid immersion lithography: Why, how, and when? Journal of Vacuum Science & Technology B, 2004. 22(6): p. 2877–2881.

    Google Scholar 

  218. Gil, D., et al., Immersion lithography: New opportunities for semiconductor manufacturing. Journal of Vacuum Science & Technology B, 2004. 22(6): p. 3431–3438.

    Google Scholar 

  219. del Campo, A. and E. Arzt, Fabrication approaches for generating complex micro- and nanopatterns on polymeric surfaces. Chemical Reviews, 2008. 108(3): p. 911–945.

    Google Scholar 

  220. Xia, Y.N. and G.M. Whitesides, Soft lithography. Annual Review of Materials Science, 1998. 28: p. 153–184.

    Google Scholar 

  221. Rogers, J.A. and R.G. Nuzzo, Recent progress in soft lithography. Materials Today, 2005. 8(2): p. 50–56.

    Google Scholar 

  222. Kane, R.S., et al., Patterning proteins and cells using soft lithography. Biomaterials, 1999. 20(23–24): p. 2363–2376.

    Google Scholar 

  223. Kaufmann, T. and B.J. Ravoo, Stamps, inks and substrates: polymers in microcontact printing. Polymer Chemistry, 2010. 1(4): p. 371–387.

    Google Scholar 

  224. Ruiz, S.A. and C.S. Chen, Microcontact printing: A tool to pattern. Soft Matter, 2007. 3(2): p. 168–177.

    Google Scholar 

  225. Amellal, K., et al., Injection-molding of medical plastics—a review. Advances in Polymer Technology, 1994. 13(4): p. 315–322.

    Google Scholar 

  226. Chen, Z.B. and L.S. Turng, A review of current developments in process and quality control for injection molding. Advances in Polymer Technology, 2005. 24(3): p. 165–182.

    Google Scholar 

  227. Mendes, P.M., C.L. Yeung, and J.A. Preece, Bio-nanopatterning of surfaces. Nanoscale Research Letters, 2007. 2(8): p. 373–384.

    Google Scholar 

  228. Xie, Z., et al., Polymer Nanostructures Made by Scanning Probe Lithography: Recent Progress in Material Applications. Macromolecular Rapid Communications, 2012. 33(5): p. 359–373.

    Google Scholar 

  229. Rosa, L.G. and J. Liang, Atomic force microscope nanolithography: dip-pen, nanoshaving, nanografting, tapping mode, electrochemical and thermal nanolithography. Journal of Physics-Condensed Matter, 2009. 21(48).

    Google Scholar 

  230. Lim, J.H., et al., Direct-write dip-pen nanolithography of proteins on modified silicon oxide surfaces. Angewandte Chemie-International Edition, 2003. 42(20): p. 2309–2312.

    Google Scholar 

  231. Lee, M., et al., Protein nanoarray on Prolinker ™ surface constructed by atomic force microscopy dip-pen nanolithography for analysis of protein interaction. Proteomics, 2006. 6(4): p. 1094–1103.

    Google Scholar 

  232. Demers, L.M., et al., Direct patterning of modified oligonucleotides on metals and insulators by dip-pen nanolithography. Science, 2002. 296(5574): p. 1836–1838.

    Google Scholar 

  233. Wendel, M., et al., Nanolithography with an atomic-force microscope for integrated fabrication of quantum electronic devices. Applied Physics Letters, 1994. 65(14): p. 1775–1777.

    Google Scholar 

  234. Liu, G.Y., S. Xu, and Y.L. Qian, Nanofabrication of self-assembled monolayers using scanning probe lithography. Accounts of Chemical Research, 2000. 33(7): p. 457–466.

    Google Scholar 

  235. Xu, S. and G.Y. Liu, Nanometer-scale fabrication by simultaneous nanoshaving and molecular self-assembly. Langmuir, 1997. 13(2): p. 127–129.

    Google Scholar 

  236. Banerjee, I.A., et al., Thiolated peptide nanotube assembly as arrays on patterned Au substrates. Nano Letters, 2004. 4(12): p. 2437–2440.

    Google Scholar 

  237. Nuraje, N., et al., Biological bottom-up assembly of antibody nanotubes on patterned antigen arrays. Journal of the American Chemical Society, 2004. 126(26): p. 8088–8089.

    Google Scholar 

  238. Zhao, Z.Y., P.A. Banerjee, and H. Matsui, Simultaneous targeted immobilization of anti-human IgG-coated nanotubes and anti-mouse IgG-coated nanotubes on the complementary antigen-patterned surfaces via biological molecular recognition. Journal of the American Chemical Society, 2005. 127(25): p. 8930–8931.

    Google Scholar 

  239. Schift, H., Nanoimprint lithography: An old story in modern times? A review. Journal of Vacuum Science & Technology B, 2008. 26(2): p. 458–480.

    Google Scholar 

  240. Guo, L.J., Nanoimprint lithography: Methods and material requirements. Advanced Materials, 2007. 19(4): p. 495–513.

    Google Scholar 

  241. Michel, R., et al., A novel approach to produce biologically relevant chemical patterns at the nanometer scale: Selective molecular assembly patterning combined with colloidal lithography. Langmuir, 2002. 18(22): p. 8580–8586.

    Google Scholar 

  242. Csucs, G., et al., Microcontact Printing of Macromolecules with Submicrometer Resolution by Means of Polyolefin Stamps. Langmuir, 2003. 19(15): p. 6104–6109.

    Google Scholar 

  243. Nakamatsu, K., et al., Nanoimprint and nanocontact technologies using hydrogen silsesquioxane. Journal of Vacuum Science & Technology B, 2005. 23(2): p. 507–512.

    Google Scholar 

  244. Rolland, J.P., et al., Solvent-resistant photocurable “liquid teflon” for microfluidic device fabrication. Journal of the American Chemical Society, 2004. 126(8): p. 2322–2323.

    Google Scholar 

  245. Renault, J.P., et al., Fabricating arrays of single protein molecules on glass using microcontact printing. Journal of Physical Chemistry B, 2003. 107(3): p. 703–711.

    Google Scholar 

  246. Pla-Roca, M., et al., Micro/nanopatterning of proteins via contact printing using high aspect ratio PMMA stamps and NanoImprint apparatus. Langmuir, 2007. 23(16): p. 8614–8618.

    Google Scholar 

  247. Li, H.W., et al., Nanocontact printing: A route to sub-50-nm-scale chemical and biological patterning. Langmuir, 2003. 19(6): p. 1963–1965.

    Google Scholar 

  248. Komuro, N., et al., Inkjet printed (bio)chemical sensing devices. Analytical and Bioanalytical Chemistry, 2013. 405(17): p. 5785–5805.

    Google Scholar 

  249. Singh, M., et al., Inkjet Printing—Process and Its Applications. Advanced Materials, 2010. 22(6): p. 673–685.

    Google Scholar 

  250. Gonzalez-Macia, L., et al., Advanced printing and deposition methodologies for the fabrication of biosensors and biodevices. Analyst, 2010. 135(5): p. 845–867.

    Google Scholar 

  251. Delaney, J.T., P.J. Smith, and U.S. Schubert, Inkjet printing of proteins. Soft Matter, 2009. 5(24): p. 4866–4877.

    Google Scholar 

  252. Ito, Y., Surface micropatterning to regulate cell functions. Biomaterials, 1999. 20(23–24): p. 2333–2342.

    Google Scholar 

  253. Webb, K., V. Hlady, and P.A. Tresco, Relationships among cell attachment, spreading, cytoskeletal organization, and migration rate for anchorage-dependent cells on model surfaces. Journal of Biomedical Materials Research, 2000. 49(3): p. 362–368.

    Google Scholar 

  254. Kapur, R. and A.S. Rudolph, Cellular and cytoskeleton morphology and strength of adhesion of cells on self-assembled monolayers of organosilanes. Experimental Cell Research, 1998. 244(1): p. 275–285.

    Google Scholar 

  255. Jenney, C.R., et al., Human monocyte/macrophage adhesion, macrophage motility, and IL-4-induced foreign body giant cell formation on silane-modified surfaces in vitro. Journal of Biomedical Materials Research, 1998. 41(2): p. 171–184.

    Google Scholar 

  256. Sukenik, C.N., et al., Modulation of cell-adhesion by modification of titanium surfaces with covalently attached self-assembled monolayers. Journal of Biomedical Materials Research, 1990. 24(10): p. 1307–1323.

    Google Scholar 

  257. Wu, N. and W.B. Russel, Micro- and nano-patterns created via electrohydrodynamic instabilities. Nano Today, 2009. 4(2): p. 180–192.

    Google Scholar 

  258. Schaffer, E., et al., Electrohydrodynamic instabilities in polymer films. Europhysics Letters, 2001. 53(4): p. 518–524.

    Google Scholar 

  259. Gentili, D., et al., Applications of dewetting in micro and nanotechnology. Chemical Society Reviews, 2012. 41(12): p. 4430–4443.

    Google Scholar 

  260. Bunz, U.H.F., Breath Figures as a Dynamic Templating Method for Polymers and Nanomaterials. Advanced Materials, 2006. 18(8): p. 973–989.

    Google Scholar 

  261. Muñoz-Bonilla, A., M. Fernández-García, and J. Rodríguez-Hernández, Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach. Progress in Polymer Science, 2014. 39(3): p. 510–554.

    Google Scholar 

  262. Bai, H., et al., Breath figure arrays: Unconventional fabrications, functionalizations, and applications. Angewandte Chemie—International Edition, 2013. 52(47): p. 12240–12255.

    Google Scholar 

  263. Escalé, P., et al., Recent advances in honeycomb-structured porous polymer films prepared via breath figures. European Polymer Journal, 2012. 48(6): p. 1001–1025.

    Google Scholar 

  264. Hernández-Guerrero, M. and M.H. Stenzel, Honeycomb structured polymer films via breath figures. Polymer Chemistry, 2012. 3(3): p. 563–577.

    Google Scholar 

  265. Nishida, J., et al., Preparation of self-organized micro-patterned polymer films having cell adhesive ligands. Polymer Journal, 2002. 34(3): p. 166–174.

    Google Scholar 

  266. Ting, S.R.S., et al., Lectin recognizable biomaterials synthesized via nitroxide-mediated polymerization of a methacryloyl galactose monomer. Macromolecules, 2009. 42(24): p. 9422–9434.

    Google Scholar 

  267. Escalé, P., et al., Synthetic route effect on macromolecular architecture: from block to gradient copolymers based on acryloyl galactose monomer using RAFT polymerization. Macromolecules, 2011. 44 (15): p. 5911–5919.

    Google Scholar 

  268. Stenzel, M.H., T.P. Davis, and A.G. Fane, Honeycomb structured porous films prepared from carbohydrate based polymers synthesized via the RAFT process. Journal of Materials Chemistry, 2003. 13(9): p. 2090–2097.

    Google Scholar 

  269. Mosbach, K., The promise of molecular imprinting. Scientific American, 2006. 295(4): p. 86–91.

    Google Scholar 

  270. Ye, L. and K. Mosbach, The technique of molecular imprinting—Principle, state of the art, and future aspects. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2001. 41(1–4): p. 107–113.

    Google Scholar 

  271. Ye, L. and K. Mosbach, Molecular imprinting: Synthetic materials as substitutes for biological antibodies and receptors. Chemistry of Materials, 2008. 20(3): p. 859–868.

    Google Scholar 

  272. Holliger, P. and H.R. Hoogenboom, Artificial antibodies and enzymes—mimicking nature and beyond. Trends in Biotechnology, 1995. 13(1): p. 7–9.

    Google Scholar 

  273. Balamurugan, S. and D.A. Spivak, Molecular imprinting in monolayer surfaces. Journal of Molecular Recognition, 2011. 24(6): p. 915–929.

    Google Scholar 

  274. Nicholls, I.A. and J.P. Rosengren, Molecular imprinting of surfaces. Bioseparation, 2001. 10(6): p. 301–305.

    Google Scholar 

  275. Sharma, P.S., et al., Surface development of molecularly imprinted polymer films to enhance sensing signals. Trac-Trends in Analytical Chemistry, 2013. 51: p. 146–157.

    Google Scholar 

  276. Hillberg, A.L. and M. Tabrizian, Biomolecule imprinting: Developments in mimicking dynamic natural recognition systems. IRBM, 2008. 29(2–3): p. 89–104.

    Google Scholar 

  277. Wulff, G., Molecular imprinting in cross-linked materials with the aid of molecular templates—a way towards artificial antibodies. Angewandte Chemie-International Edition in English, 1995. 34(17): p. 1812–1832.

    Google Scholar 

  278. Wang, H.Y., T. Kobayashi, and N. Fujii, Molecular imprint membranes prepared by the phase inversion precipitation technique. Langmuir, 1996. 12(20): p. 4850–4856.

    Google Scholar 

  279. Arshady, R. and K. Mosbach, Synthesis of substrate-selective polymers by host-guest polymerization. Macromolecular Chemistry and Physics-Makromolekulare Chemie, 1981. 182(2): p. 687–692.

    Google Scholar 

  280. Wulff, G. and R. Schonfeld, Polymerizable amidines—Adhesion mediators and binding sites for molecular imprinting. Advanced Materials, 1998. 10(12): p. 957–959.

    Google Scholar 

  281. Kirsch, N., et al., Sacrificial spacer and non-covalent routes toward the molecular imprinting of “poorly-functionalized” N-heterocycles. Analytica Chimica Acta, 2004. 504(1): p. 63–71.

    Google Scholar 

  282. Sellergren, B. and C.J. Allender, Molecularly imprinted polymers: A bridge to advanced drug delivery. Advanced Drug Delivery Reviews, 2005. 57(12): p. 1733–1741.

    Google Scholar 

  283. Sellergren, B., Molecularly imprinted polymers, man made mimics of antibodies and their applications in Analytical Chemistry. Techniques and Instrumentation in Analytical Chemistry. Vol. 23. 2001, Amsterdam: Elsevier.

    Google Scholar 

  284. Gong, J., et al., Micro- and Nanopatterning of Inorganic and Polymeric Substrates by Indentation Lithography. Nano Letters, 2010. 10(7): p. 2702–2708.

    Google Scholar 

  285. Nie, Z. and E. Kumacheva, Patterning surfaces with functional polymers. Nature Materials, 2008. 7(4): p. 277–290.

    Google Scholar 

  286. Woodson, M. and J. Liu, Functional nanostructures from surface chemistry patterning. Physical Chemistry Chemical Physics, 2007. 9(2): p. 207–225.

    Google Scholar 

  287. Tsai, I.Y., A.J. Crosby, and T.P. Russell, Surface patterning, in Cell Mechanics, Y.L. Wang and D.E. Discher, Editors. 2007. p. 67–87.

    Google Scholar 

  288. Fuierer, R.R., et al., Patterning mesoscale gradient structures with self-assembled monolayers and scanning tunneling microscopy based replacement lithography. Advanced Materials, 2002. 14(2): p. 154–157.

    Google Scholar 

  289. Kramer, S., R.R. Fuierer, and C.B. Gorman, Scanning probe lithography using self-assembled monolayers. Chemical Reviews, 2003. 103(11): p. 4367–4418.

    Google Scholar 

  290. Ariga, K., et al., Enzyme nanoarchitectonics: organization and device application. Chemical Society Reviews, 2013. 42(15): p. 6322–6345.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Rodríguez-Hernández .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rodríguez-Hernández, J. (2015). Patterning and Functionalization of Polymeric Surfaces. In: Rodríguez-Hernández, J., Cortajarena, A. (eds) Design of Polymeric Platforms for Selective Biorecognition. Springer, Cham. https://doi.org/10.1007/978-3-319-17061-9_2

Download citation

Publish with us

Policies and ethics