Skip to main content

VR-Assisted Physical Rehabilitation: Adapting to the Needs of Therapists and Patients

  • Chapter
  • First Online:
Virtual Realities

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8844))

Abstract

Virtual Reality technologies are slated to transform the practice of physical rehabilitation and the potential benefits have only started to be explored. We present in this paper a direct motion demonstration approach for allowing therapists to intuitively create and edit customized exercises and therapy programs that are responsive to the needs of their patients. We propose adaptive exercise models, motion processing algorithms, and delivery techniques designed to achieve exercises that effectively respond to physical limitations and recovery rates of individual patients. Remote networked solutions are also presented for allowing therapists and patients to intuitively share their motions during real-time collaborative therapy sessions. Our solutions have been implemented as a low-cost portable system based on a Kinect sensor, and as a high-end virtual reality system providing full-scale immersion. We analyze and discuss our methods and systems in light of feedback received from therapists.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, F., Grossman, T., Matejka, J., Fitzmaurice, G.W.: YouMove: enhancing movement training with an augmented reality mirror. In: Proceedings of User Interface Software and Technology (UIST), pp. 311–320. ACM (2013)

    Google Scholar 

  2. American Physical Therapy Association: Guide to Physical Therapist Practice. Rev. 2nd edn. American Physical Therapy Association, Alexandria (1999)

    Google Scholar 

  3. Bonnechere, B., Jansen, B., Salvia, P., Bouzahouene, H., Omelina, L., Cornelis, J., Rooze, M., Van Sint Jan, S.: What are the current limits of the kinect sensor. In: Proceedings of the 9th International Conference on Disability, Virutal Reality & Associated Technologies, Laval, France, pp. 287–294 (2012)

    Google Scholar 

  4. Breeben, O.: Introduction to Physical Therapy for Physical Therapy Assistants. Jones and Barlett, Sudbury (2007)

    Google Scholar 

  5. Burke, J.W., McNeill, M., Charles, D., Morrow, P., Crosbie, J., McDonough, S.: Serious games for upper limb rehabilitation following stroke. In: Proceedings of the 2009 Conference in Games and Virtual Worlds for Serious Applications, VS-GAMES 2009, pp. 103–110. IEEE Computer Society, Washington, DC (2009)

    Google Scholar 

  6. Cameirao, M., Badia, B., Verschure, P.: Virtual reality based upper extremity rehabilitation following stroke: a review. J. CyberTherapy Rehabil. 1(1), 63–74 (2008)

    Google Scholar 

  7. Camporesi, C., Huang, Y., Kallmann, M.: Interactive motion modeling and parameterization by direct demonstration. In: Safonova, A. (ed.) IVA 2010. LNCS, vol. 6356, pp. 77–90. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Chang, C.M.: The design of a shoulder rehabilitation game system. In: 2010 IET International Conference on Frontier Computing. Theory, Technologies and Applications, pp. 151–156 (2010)

    Google Scholar 

  9. Clark, R.A., Pua, Y.H., Fortin, K., Ritchie, C., Webster, K.E., Denehy, L., Bryant, A.L.: Validity of the microsoft kinect for assessment of postural control. Gait Posture 36(3), 372–377 (2012)

    Article  Google Scholar 

  10. Gabel, M., Gilad-Bachrach, R., Renshaw, E., Schuster, A.: Full body gait analysis with kinect. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1964–1967. IEEE (2012)

    Google Scholar 

  11. Galna, B., Barry, G., Jackson, D., Mhiripiri, D., Olivier, P., Rochester, L.: Accuracy of the microsoft kinect sensor for measuring movement in people with parkinson’s disease. Gait Posture 39(4), 1062–1068 (2014)

    Article  Google Scholar 

  12. Geurts, L., Vanden Abeele, V., Husson, J., Windey, F., Van Overveldt, M., Annema, J.H., Desmet, S.: Digital games for physical therapy: fulfilling the need for calibration and adaptation. In: Proceedings of the Fifth International Conference on Tangible, Embedded, and Embodied Interaction, pp. 117–124. ACM (2011)

    Google Scholar 

  13. Glardon, P., Boulic, R., Thalmann, D.: A coherent locomotion engine extrapolating beyond experimental data. In: Proceedings of Computer Animation and Social Agent, pp. 73–84 (2004)

    Google Scholar 

  14. Golomb, M.R., McDonald, B.C., Warden, S.J., Yonkman, J., Saykin, A.J., Shirley, B., Huber, M., Rabin, B., Abdelbaky, M., Nwosu, M.E., Barkat-Masih, M., Burdea, G.C.: In-home virtual reality videogame telerehabilitation in adolescents with hemiplegic cerebral palsy. Arch. Phys. Med. Rehabil. 91(1), 1–8 (2010)

    Article  Google Scholar 

  15. Golomb, M., Barkat-Masih, M., Rabin, B., Abdelbaky, M., Huber, M., Burdea, G.: Eleven months of home virtual reality telerehabilitation - lessons learned. In: Virtual Rehabilitation International Conference, pp. 23–28 (2009)

    Google Scholar 

  16. Grassia, F.S.: Practical parameterization of rotations using the exponential map. J. Graph. Tools 3(3), 29–48 (1998)

    Article  Google Scholar 

  17. Grealy, M., Nasser, B.: The use of virtual reality in assisting rehabilitation. Adv. Clin. Neurosci. Rehabil. 13(9), 19–20 (2013)

    Google Scholar 

  18. Gupta, A., O’Malley, M.: Robotic Exoskeletons for Upper Extremity Rehabilitation, pp. 371–396. I-Tech Education and Publishing, Vienna (2007)

    Google Scholar 

  19. Holden, M.K.: Virtual environments for motor rehabilitation: review. Cyberpsychol. Behav. 8(3), 187–211 (2005)

    Article  MathSciNet  Google Scholar 

  20. Holden, M.K., Dyar, T.A., Schwamm, L., Bizzi, E.: Virtual-environment-based telerehabilitation in patients with stroke. Presence Teleoper. Virtual Environ. 14(2), 214–233 (2005)

    Article  Google Scholar 

  21. Kizony, R., Weiss, P., Feldman, Y., Shani, M., Elion, O., Kizony, R., Weiss, P., Kizony, R., Harel, S., Baum-Cohen, I.: Evaluation of a tele-health system for upper extremity stroke rehabilitation. In: 2013 International Conference on Virtual Rehabilitation (ICVR), pp. 80–86, August 2013

    Google Scholar 

  22. Kizony, R., Katz, N., et al.: Adapting an immersive virtual reality system for rehabilitation. J. Vis. Comput. Anim. 14(5), 261–268 (2003)

    Article  Google Scholar 

  23. Kovar, L., Gleicher, M.: Automated extraction and parameterization of motions in large data sets. ACM Trans. Graph. (Proceedings of SIGGRAPH) 23(3), 559–568 (2004)

    Article  Google Scholar 

  24. Kurillo, G., Koritnik, T., Bajd, T., Bajcsy, R.: Real-time 3d avatars for tele-rehabilitation in virtual reality. In: MMVR, pp. 290–296 (2011)

    Google Scholar 

  25. Lai, J.C., Woo, J., Hui, E., Chan, W.: Telerehabilitationa new model for community-based stroke rehabilitation. J. Telemed. Telecare 10(4), 199–205 (2004)

    Article  Google Scholar 

  26. Lange, B., Flynn, S.M., Rizzo, A.A.: Game-based telerehabilitation. Eur. J. Phys. Rehabil. Med. 45(1), 143–151 (2009)

    Google Scholar 

  27. Lange, B., Koenig, S., Chang, C.Y., McConnell, E., Suma, E., Bolas, M., Rizzo, A.: Designing informed game-based rehabilitation tasks leveraging advances in virtual reality. Disabil. Rehabil. 34(22), 1863–1870 (2012)

    Article  Google Scholar 

  28. Leder, R., Azcarate, G., Savage, R., Savage, S., Sucar, L., Reinkensmeyer, D., Toxtli, C., Roth, E., Molina, A.: Nintendo wii remote for computer simulated arm and wrist therapy in stroke survivors with upper extremity hemipariesis. In: Virtual Rehabilitation, 2008. p. 74 (2008)

    Google Scholar 

  29. Levac, D.E., Galvin, J.: When is virtual reality therapy? Arch. Phys. Med. Rehabil. 94(4), 795–798 (2013)

    Article  Google Scholar 

  30. Liu, C.K., Popović, Z.: Synthesis of complex dynamic character motion from simple animations. ACM Trans. Graph. 21(3), 408–416 (2002)

    Article  Google Scholar 

  31. Lowes, L.P., Alfano, L.N., Yetter, B.A., Worthen-Chaudhari, L., Hinchman, W., Savage, J., Samona, P., Flanigan, K.M., Mendell, J.R.: Proof of concept of the ability of the kinect to quantify upper extremity function in dystrophinopathy. PLoS Curr. 5 (2013)

    Google Scholar 

  32. Lü, H., Li, Y.: Gesture coder: a tool for programming multi-touch gestures by demonstration. In: Proceedings of the 2012 ACM Annual Conference on Human Factors in Computing Systems, pp. 2875–2884. ACM (2012)

    Google Scholar 

  33. Ma, W., Xia, S., Hodgins, J.K., Yang, X., Li, C., Wang, Z.: Modeling style and variation in human motion. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA) (2010)

    Google Scholar 

  34. Mobini, A., Behzadipour, S., Saadat Foumani, M.: Accuracy of Kinect’s skeleton tracking for upper body rehabilitation applications. Disabil. Rehabil. Assist. Technol. 9(4), 344–352 (2014)

    Article  Google Scholar 

  35. Mukai, T., Kuriyama, S.: Geostatistical motion interpolation. In: ACM SIGGRAPH, pp. 1062–1070. ACM, New York (2005)

    Google Scholar 

  36. Nixon, M., Chen, Y., Howard, A.: Quantitative evaluation of the microsoft kinect for use in an upper extremity virtual rehabilitation environment. In: International Conference on Virtual Rehabilitation (ICVR), Philadelphia, PA, USA, May 2013

    Google Scholar 

  37. Norkin, C.: Measurement of Joint Motion. A Guide to Goniometry. F.A. Davis Company, Philadelphia (2003)

    Google Scholar 

  38. Obdrzalek, S., Kurillo, G., Han, J., Abresch, T., Bajcsy, R.: Real-time human pose detection and tracking for tele-rehabilitation in virtual reality. Stud. Health Technol. Inform. 173, 320–324 (2012)

    Google Scholar 

  39. Obdrzalek, S., Kurillo, G., Ofli, F., Bajcsy, R., Seto, E., Jimison, H., Pavel, M.: Accuracy and robustness of kinect pose estimation in the context of coaching of elderly population. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1188–1193, August 2012

    Google Scholar 

  40. Ogre3D: Object-oriented graphics rendering engine. www.ogre3d.org

  41. Omelina, L., Jansen, B., Bonnechre, B., Van Sint Jan, S., Cornelis, J.: Serious games for physical rehabilitation: designing highly configurable and adaptable games. In: Proceedings of the 9th International Conference on Disability, Virutal Reality & Associated Technologies, Laval, France (2012)

    Google Scholar 

  42. Perry, J.C., Andureu, J., Cavallaro, F.I., Veneman, J., Carmien, S., Keller, T.: Effective game use in neurorehabilitation: user-centered perspectives. Handbook of Research on Improving Learning and Motivation through Educational Games, IGI Global (2010)

    Google Scholar 

  43. Popescu, V.G., Burdea, G.C., Bouzit, M., Hentz, V.R.: A virtual-reality-based telerehabilitation system with force feedback. Trans. Info. Tech. Biomed. 4(1), 45–51 (2000)

    Article  Google Scholar 

  44. Reflexion Health: http://www.reflexionhealth.com

  45. Rose, C., Bodenheimer, B., Cohen, M.F.: Verbs and adverbs: multidimensional motion interpolation. IEEE Comput. Graph. Appl. 18, 32–40 (1998)

    Article  Google Scholar 

  46. Rose III, C.F., Sloan, P.P.J., Cohen, M.F.: Artist-directed inverse-kinematics using radial basis function interpolation. Comput. Graph. Forum (Proceedings of Eurographics) 20(3), 239–250 (2001)

    Article  Google Scholar 

  47. Salvati, M., Le Callennec, B., Boulic, R.: A generic method for geometric contraints detection. In: Eurographics (2004)

    Google Scholar 

  48. Schönauer, C., Pintaric, T., Kaufmann, H.: Full body interaction for serious games in motor rehabilitation. In: Proceedings of the 2nd Augmented Human International Conference, AH 2011, pp. 4:1–4:8. ACM, New York (2011)

    Google Scholar 

  49. Skoglund, A., Iliev, B., Palm, R.: Programming-by-demonstration of reaching motions - a next-state-planner approach. Robot. Auton. Syst. 58(5), 607–621 (2010)

    Article  Google Scholar 

  50. Velloso, E., Bulling, A., Gellersen, H.: Motionma: motion modelling and analysis by demonstration. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2013, pp. 1309–1318. ACM, New York (2013)

    Google Scholar 

  51. Wollersheim, D., Merkes, M., Shields, N., Liamputtong, P., Wallis, L., Reynolds, F., Koh, L.: Physical and psychosocial effects of wii video game use among older women. Int. J. Emerg. Technol. Soc. 8(2), 85–98 (2010)

    Google Scholar 

  52. Wong, Y., Hui, E., Woo, J.: A community-based exercise programme for older persons with knee pain using telemedicine. J. Telemed. Telecare 11(6), 310–315 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by CITRIS grant number 128, by NSF award CNS-1305196, and by a HSRI San Joaquin Valley eHealth Network seed grant funded by AT&T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Kallmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kallmann, M., Camporesi, C., Han, J. (2015). VR-Assisted Physical Rehabilitation: Adapting to the Needs of Therapists and Patients. In: Brunnett, G., Coquillart, S., van Liere, R., Welch, G., Váša, L. (eds) Virtual Realities. Lecture Notes in Computer Science(), vol 8844. Springer, Cham. https://doi.org/10.1007/978-3-319-17043-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17043-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17042-8

  • Online ISBN: 978-3-319-17043-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics