Skip to main content

Microscopic Models for Vibrations in Mechanical Systems Under Equilibrium and Non-equilibrium Conditions

  • Chapter
Applications of Chaos and Nonlinear Dynamics in Science and Engineering - Vol. 4

Part of the book series: Understanding Complex Systems ((UCS))

  • 1440 Accesses

Abstract

Equilibrium Thermodynamics studies states of macroscopic objects that do not change in time when isolated from their environment. This requires chemical, mechanical and thermal equilibrium which together amount to thermodynamic equilibrium. A non-equilibrium state can be established putting the system in contact with more than one reservoir of heat, mass, or other physical quantities. The dynamical evolution of a system of particles representing a macroscopic bar in both equilibrium and non-equilibrium conditions is illustrated by means of a simple one-dimensional molecular dynamics model, illustrating how macroscopic phenomena may be qualitatively understood with microscopic toy models. In particular, a system of hard point-particles undergoing only binary collisions is considered. A conservative force is applied on one of the end particles to reproduce the cohesion of the bar. Non-equilibrium conditions are obtained by adding two deterministic thermostats acting on the first and on the last particle of the bar. In the equilibrium case, we determine the values of macroscopic and microscopic proprieties of the system, such as length, linear density, specific kinetic energy, average energy per particle, and position of the centre of mass of control groups located in different parts of the bar. In the non-equilibrium case, we focus on length oscillations, and we demonstrate their dependence on the characteristic parameters of the thermostats. Although highly idealized, this model reproduces an important qualitative aspect of metal bars: hardening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonetto, F., Lebowitz, J., Rey-Bellet, L.: In: Fokas, A., Grigoryan, A., Kibble, T., Zegarlinski, B. (eds.) Mathematical Physics 2000. Imperial College, London (2000)

    Google Scholar 

  2. Castiglione, P., Falcioni, M., Lesne, A., Vulpiani, A.: Chaos and Coarse Graining in Statistical Mechanics. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  3. Dahr, A.: Adv. Phys. 57, 457 (2008)

    Article  ADS  Google Scholar 

  4. Conti, L., et al. J. Stat. Mech. P12003 (2013)

    Google Scholar 

  5. Conti, L., et al.: Phys. Rev. E 85, 1 (2012)

    Article  MathSciNet  Google Scholar 

  6. De Gregorio, P., et al.: Phys. Rev. B 84, 1 (2011)

    Article  Google Scholar 

  7. Evans, D.J., Morriss, G.: Statistical Mechanics of Nonequilibrium Liquids. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  8. Peierls, E.: Quantum Theory of Solids. Oxford University Press, London (1955)

    MATH  Google Scholar 

  9. Fermi, E., Pasta, J., Ulam, S.: Los Alamos Document LA-190 (1955)

    Google Scholar 

  10. Gallavotti, G.: The Fermi-Pasta-Ulam Problem: A Status Report. Springer, Berlin (2007)

    Google Scholar 

  11. Jepps, O.G., Rondoni, L.: J. Phys. A Math. Theor. 43, 133001 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  12. Lanczos, C.: The Variational Principles of Mechanics. Courier Dover Publications, New York (2012)

    Google Scholar 

  13. Lepri, S., Livi, R., Politi, A.: Phys. Rep. 377, 1 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  14. Maeda, A., Munakata, T.: Phys. Rev. E 52, 234 (1995)

    Article  ADS  Google Scholar 

  15. Nosé, S.: J. Chem. Phys. 81, 511 (1984)

    Article  ADS  Google Scholar 

  16. O’Connor, A.J., Lebowitz, J.L.: J. Math. Phys. 15, 692 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  17. Payton, D.N., Rich, M., Visscher, W.M.: Phys. Rev. 160, 706 (1967)

    Article  ADS  Google Scholar 

  18. Rubin, R.J., Greer, W.L.: J. Math. Phys. 12, 1686 (1971)

    Article  ADS  Google Scholar 

  19. Tehver, R., Toigo, F., Koplik, J., Banavar, J.R.: Phys. Rev. E 57, R17 (1998)

    Article  ADS  Google Scholar 

  20. Zhang, F., Isbister, D.J., Evans, D.J.: Phys. Rev. E 61, 3541 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the European Research Council under the European Community’s Seventh Framework Program (FP7/2007-2013)/ERC grant agreement no. 202680. The EC is not liable for any use that can be made of the information contained herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lamberto Rondoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stricker, L., Rondoni, L. (2015). Microscopic Models for Vibrations in Mechanical Systems Under Equilibrium and Non-equilibrium Conditions. In: Banerjee, S., Rondoni, L. (eds) Applications of Chaos and Nonlinear Dynamics in Science and Engineering - Vol. 4. Understanding Complex Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-17037-4_1

Download citation

Publish with us

Policies and ethics