Skip to main content

Prospects and Analysis of Hydrogen Production from Renewable Electricity Sources in Algeria

  • Chapter
Progress in Clean Energy, Volume 2

Abstract

In response to the global concerns for reducing the greenhouse gas emissions and ensure the energy security supply, renewable energy-based hydrogen systems appear to be an interesting solution. The purpose of this study is on techno-economic analysis of massive hydrogen production system through water electrolysis using different renewable energy sources. Numerical simulations are carried out to study the performance of hydrogen production system. The potential of all electrical sources is analyzed and assessed. The sizing of a hydrogen production system and annual energy requirements are determined. Correct methodology is demonstrated for a case study in Ouargla region. An approximate cost analysis, which included a total investment estimate, was performed. The levelized cost of hydrogen production was also calculated for comparison purposes. Finally, the results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A :

Area, m2

C :

Cost, $

CF:

Capacity factor

C :

Specific heat capacity, kJ/kg K

E :

Electric energy, kWh

G :

Solar irradiation, kWh/m2

g :

Acceleration of gravity, m2/s

H :

Height, m

h :

Well depth, m

I :

Investment, $

k :

Theoretical specific energy, kWh/kg

m :

Annual hydrogen production capacity, kg/year

O&M:

Annual operation and maintenance cost, $/year

P :

Puissance, MW

Q :

Volumetric flow rate, m3/h

t :

Running hours, h

T a :

Ambient temperature, °C

η :

Efficiency, %

Δ:

Difference

BOS:

Balance of system

c:

Chimney

coll:

Collector

elec:

Electrolyzer

f:

Fluid

Geo:

Geothermal carbon dioxide system

h:

Horizontal

i:

Tilted

PCU:

Power conversion unit

PV:

Photovoltaic

RE:

Renewable energy

SCPP:

Solar chimney power plant

t:

Turbine

th:

Theoretical

u:

Unit

References

  1. International Energy Agency (IEA) (2013) CO2 emissions from fuel combustion highlights

    Google Scholar 

  2. Shafiee S, Topal E (2009) When will fossil fuel reserves be diminished? Energy Policy 37:181–189

    Article  Google Scholar 

  3. Barbir F (2009) Transition to renewable energy systems with hydrogen as an energy carrier. Energy 34:308–312

    Article  Google Scholar 

  4. Abbasi T, Abbasi SA (2011) ‘Renewable’ hydrogen: prospects and challenges. Renew Sustain Energy Rev 15:3034–3040

    Article  Google Scholar 

  5. Miltner A, Wukovits W, Pröll T, Friedl A (2010) Renewable hydrogen production: a technical evaluation based on process simulation. J Clean Prod 18:S51–S62

    Article  Google Scholar 

  6. Kleijn R, van der Voet E (2010) Resource constraints in a hydrogen economy based on renewable energy sources: an exploration. Renew Sustain Energy Rev 14:2784–2795

    Article  Google Scholar 

  7. Bicakova O, Straka P (2012) Review: production of hydrogen from renewable resources and its effectiveness. Int J Hydrog Energy 37:11563–11578

    Article  Google Scholar 

  8. Dincer I (2012) Green methods for hydrogen production. Int J Hydrog Energy 37:1954–1971

    Article  Google Scholar 

  9. Caliskan H, Dincer I, Hepbasli A (2013) Exergoeconomic and environmental impact analyses of a renewable energy based hydrogen production system. Int J Hydrog Energy 38:6104–6111

    Article  Google Scholar 

  10. Escobar B, Hernandez J, Barbosa R, Verde-Gomez Y (2013) Analytical model as a tool for the sizing of a hydrogen production system based on renewable energy: The Mexican Caribbean as a case of study. Int J Hydrog Energy 38:12562–12569

    Article  Google Scholar 

  11. Acar C, Dincer I (2014) Review: comparative assessment of hydrogen production methods from renewable and non-renewable sources. Int J Hydrog Energy 39:1–12

    Article  Google Scholar 

  12. Gahleitner G (2013) Review: hydrogen from renewable electricity: an international review of power-to-gas pilot plants for stationary applications. Int J Hydrog Energy 38:2039–2061

    Article  Google Scholar 

  13. Sonatrach (2011) Annual report. www.sonatrach.com

  14. Boudghene Stambouli A, Khiat Z, Flazi S, Kitamura Y (2012) A review on the renewable energy development in Algeria: current perspective, energy scenario and sustainability issues. Renew Sustain Energy Rev 16:4445–4460

    Article  Google Scholar 

  15. Mahmah B, Harouadi F, Benmoussa H, Chader S, Belhamel M, M’Raoui A, Abdeladim K, Cherigui AN, Etievant C (2009) MedHySol: future federator project of massive production of solar hydrogen. Int J Hydrog Energy 34:4922–4933

    Article  Google Scholar 

  16. Boudries R, Dizene R (2008) Potentialities of hydrogen production in Algeria. Int J Hydrog Energy 33:4476–4487

    Article  Google Scholar 

  17. OPEC (2013) Annual statistical bulletin

    Google Scholar 

  18. Boudghene Stambouli A (2011) Promotion of renewable energies in Algeria: strategies and perspectives. Renew Sustain Energy Rev 15:1169–1181

    Article  Google Scholar 

  19. Boudia SM, Benmansour A, Ghellai N, Benmedjahed M, Tabet Hellal MA (2013) Temporal assessment of wind energy resource at four locations in Algerian Sahara. Energ Convers Manag 76:654–664

    Article  Google Scholar 

  20. Diaf S, Notton G (2013) Evaluation of electricity generation and energy cost of wind energy conversion systems in southern Algeria. Renew Sustain Energy Rev 23:379–390

    Article  Google Scholar 

  21. Kedaid FZ (2007) Database on the geothermal resources of Algeria. Geothermics 36:265–275

    Article  Google Scholar 

  22. Saibi H (2009) Geothermal resources in Algeria. Renew Sustain Energy Rev 13:2544–2552

    Article  Google Scholar 

  23. Ministry of Energy and Mines (MEM). www.mem-algeria.org

  24. Renewable Energy and Energy Efficiency Program (2011) Ministry of Energy and Mines

    Google Scholar 

  25. Department of Energy (2011) 2010 solar technologies market report. National Renewable Energy Laboratory

    Google Scholar 

  26. Zhou X, Wang F, Ochieng RM (2010) A review of solar chimney power technology. Renew Sustain Energy Rev 14:2315–2338

    Article  Google Scholar 

  27. Schlaich J, Bergermann R, Schiel W, Weinrebe G (2005) Design of commercial solar updraft tower systems-utilization of solar induced convective flows for power generation. J Sol Energ Eng 127:117–24

    Article  Google Scholar 

  28. Gallup DL (2009) Production engineering in geothermal technology: a review. Geothermics 38:326–334

    Article  Google Scholar 

  29. Randolph JB, Saar MO (2011) Coupling carbon dioxide sequestration with geothermal energy capture in naturally permeable, porous geologic formations: implications for CO2 sequestration. Energy Procedia 4:2206–2213

    Article  Google Scholar 

  30. Janse D (2010) Combining geothermal energy with CO2 storage. Master thesis report, Utrecht University

    Google Scholar 

  31. Clarke RE, Giddey S, Ciacchi FT, Badwal SPS, Paulb B, Andrews J (2009) Direct coupling of an electrolyser to a solar PV system for generating hydrogen. Int J Hydrog Energy 34:2531–2542

    Article  Google Scholar 

  32. HySTAT® Hydrogen Generators. www.hydrogenics.com

  33. Joshi AS, Dincer I, Reddy BV (2011) Solar hydrogen production: a comparative performance assessment. Int J Hydrog Energy 36:11246–11257

    Article  Google Scholar 

  34. SolarWorld. SW 250 poly/Version 2.0 and 2.5 Frame

    Google Scholar 

  35. Negrou B, Settou N, Chennouf N, Dokkar B (2011) Valuation and development of the solar hydrogen production. Int J Hydrog Energy 36:4110–4116

    Article  Google Scholar 

  36. Belta MT, Dincer I, Hepbasli A (2009) Potential methods for geothermal-based hydrogen production. Int J Hydrogen Energy. doi:10.1016/j.ijhydene.2009.09.040

    Google Scholar 

  37. AlZaharani AA, Dincer I, Naterer GF (2013) Performance evaluation of a geothermal based integrated system for power, hydrogen and heat generation. Int J Hydrog Energy 38:14505–14511

    Article  Google Scholar 

  38. Office National de la Météorologie (2011)

    Google Scholar 

  39. Kechiched R, Haddane A, Foufou A, Ameur Ziameche O (2013) Caracterisation petrophysique des reservoirs à l’aide de l’analyse statistique: application sur les données de la Zone 17-Champ de Hassi Messaoud-Algérie. The International conference on electronics & oil: from theory to applications, Ouargla, Algeria

    Google Scholar 

  40. Sigurvinsson J, Mansilla C, Lovera P, Werkoff F (2007) Can high temperature steam electrolysis function with geothermal heat? Int J Hydrog Energy 32:1174–1182

    Article  Google Scholar 

  41. Boudries R, Dizene R (2011) Prospects of solar hydrogen production in the Adrar region. Renew Energy 36:2872–2877

    Article  Google Scholar 

  42. Branker K, Pathak MJM, Pearce JM (2011) A review of solar photovoltaic levelized cost of electricity. Renew Sustain Energy Rev 15:4470–4482

    Article  Google Scholar 

  43. Zhou X, Yang J, Wang F, Xiao B (2009) Economic analysis of power generation from floating solar chimney power plant. Renew Sustain Energy Rev 13:736–749

    Article  Google Scholar 

  44. Nizetic S, Ninic N, Klarin B (2008) Analysis and feasibility of implementing solar chimney power plants in the Mediterranean region. Energy 33:1680–1690

    Article  Google Scholar 

  45. Fluri TP, Pretorius JP, Van Dyk C, Von Backstrom TW, Kroger DG, Van Zijl GPAG (2009) Cost analysis of solar chimney power plants. Solar Energy 83:246–256

    Article  Google Scholar 

  46. Le Sellin M (2006) Etude d’opportunité pour une filière de cheminée solaire à la Réunion. Ecole Centrale Marseille

    Google Scholar 

  47. McCollum DL, Ogden JM (2006) Techno-economic models for carbon dioxide compression, transport, and storage & correlations for estimating carbon dioxide density and viscosity. University of California

    Google Scholar 

  48. Shafeen A, Croiset E, Douglas PL, Chatzis I (2004) CO2 sequestration in Ontario, Canada. Part II: cost estimation. Energ Convers Manag 45:3207–3217

    Article  Google Scholar 

  49. Prince-Richard S (1996) A techno-economic analysis of decentralized electrolytic hydrogen production for fuel cell vehicles. Master thesis

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rahmouni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rahmouni, S., Settou, N., Negrou, B., Chennouf, N., Ghedamsi, R. (2015). Prospects and Analysis of Hydrogen Production from Renewable Electricity Sources in Algeria. In: Dincer, I., Colpan, C., Kizilkan, O., Ezan, M. (eds) Progress in Clean Energy, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-17031-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17031-2_42

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17030-5

  • Online ISBN: 978-3-319-17031-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics