Skip to main content

Clean Energy Technology Development: Hydrogen Production by Escherichia coli During Glycerol Fermentation

  • Chapter
Progress in Clean Energy, Volume 2

Abstract

Hydrogen (H2) is accepted as a clean, effective, and renewable energy source; the biotechnology of its production is intensively developed. Glycerol can serve as a cheap carbon source to produce H2 and the other biofuel by Escherichia coli during mixed acid fermentation. Data on metabolic pathways of glycerol fermentation, hydrogenase enzymes responsible for H2 production, and dependence of H2 production on pH and other external factors during glycerol fermentation are summarized; some novel findings are presented. Metabolic engineering to enhance H2 yield from glycerol has resulted in effective strains. The mixed carbon (glycerol and glucose) fermentation is a novel approach to improve H2 production and to enlarge carbon sources containing wastes used: glycerol added to glucose-containing medium is shown to increase H2 production. Taken together these are of significance for improving H2 production biotechnology as clean energy technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dharmadi Y, Murarka A, Gonzalez R (2006) Anaerobic fermentation of glycerol by Escherichia coli: a new platform for metabolic engineering. Biotechnol Bioeng 94:821–829

    Article  Google Scholar 

  2. Khanna S, Goyal A, Moholkar VS (2012) Microbial conversion of glycerol: present status and future prospects. Crit Rev Biotechnol 32:232–265

    Article  Google Scholar 

  3. Clomburg JM, Gonzalez R (2013) Anaerobic fermentation of glycerol: a platform for renewable fuels and chemicals. Trends Biotechnol 31:20–28

    Article  Google Scholar 

  4. Trchounian A (2015) Mechanisms for hydrogen production by different bacteria during mixed-acid and photo-fermentation and perspectives of hydrogen production biotechnology. Crit Rev Biotechnol 35(1):103–113

    Article  Google Scholar 

  5. Yen HW, Hu IC, Chen CY, Ho SH, Lee DJ, Chang JS (2013) Microalgae based biorefinery—from biofuels to natural products. Bioresour Technol 135:166–174

    Article  Google Scholar 

  6. Hallenbeck PC (2009) Fermentative hydrogen production: principles, progress, and prognosis. Int J Hydrog Energ 34:7379–7389

    Article  Google Scholar 

  7. Fu D, Libso A, Stroud R (2002) The structure of GlpF, a glycerol conducting channel. Novartis Found Symp 245:51–61

    Article  Google Scholar 

  8. Cintolesi A, Comburg JM, Rigou V, Zygourakis K, Gonzalez R (2011) Quantitative analysis of the fermentative metabolism of glycerol in Escherichia coli. Biotechnol Bioeng 109:187–198

    Article  Google Scholar 

  9. Ganesh I, Ravikumar S, Hong SH (2012) Metabolically engineered Escherichia coli as a tool for the production of bioenergy and biochemicals from glycerol. Biotechnol Bioproc Eng 17:671–678

    Article  Google Scholar 

  10. Poladyan A, Avagyan A, Vassilian A, Trchounian A (2013) Oxidative and reductive routes of glycerol and glucose fermentation by Escherichia coli batch cultures and their regulation by oxidizing and reducing reagents at different pHs. Curr Microbiol 66:49–55

    Article  Google Scholar 

  11. Kim K, Kim SK, Park YC, Seo JH (2014) Enhanced production of 3-hydroxypropionic acid from glycerol by modulation of glycerol metabolism in recombinant Escherichia coli. Bioresour Technol 156:170–175

    Article  Google Scholar 

  12. Bock A, Sawers G (2006) Fermentation. In: Neidhardt FG (ed) Escherichia coli and Salmonella. Cellular and molecular biology. ASM Press, Washington DC. http://www.ecosal.org

  13. Booth IR (2006) Glycerol and methylglyoxal metabolism. In: Neidhardt FG (ed) EcoSal—Escherichia coli and Salmonella. Cellular and molecular biology. ASM Press, Washington DC. http://www.ecosal.org

  14. Trchounian K, Poladyan A, Vassilian A, Trchounian A (2012) Multiple and reversible hydrogenases for hydrogen production by Escherichia coli: dependence on fermentation substrate, pH and FOF1-ATPase. Crit Rev Biochem Mol Biol 47:236–249

    Article  Google Scholar 

  15. Murarka A, Dharmadi Y, Yazdani SS, Gonzalez R (2008) Fermentative utilization of glycerol by Escherichia coli and its implications for the production of fuels and chemicals. Appl Environ Microbiol 74:1124–1135

    Article  Google Scholar 

  16. Bagramyan K, Trchounian A (2003) Structure and functioning of formate hydrogen lyase, key enzyme of mixed-acid fermentation. Biochemistry (Mosc) 68:1159–1170

    Article  Google Scholar 

  17. Trchounian A, Sawers RG (2014) Novel insights into the bioenergetics of mixed-acid fermentation: can hydrogen and proton cycles combine to help maintain a proton motive force? IUBMB Life 66:1–7

    Article  Google Scholar 

  18. Redwood MD, Mikheenko IP, Sargent F, Macaskie LE (2008) Dissecting the roles of Escherichia coli hydrogenases in biohydrogen production. FEMS Microbiol Lett 278:48–55

    Article  Google Scholar 

  19. Trchounian K, Trchounian A (2009) Hydrogenase 2 is most and hydrogenase 1 is less responsible for H2 production by Escherichia coli under glycerol fermentation at neutral and slightly alkaline pH. Int J Hydrog Energ 34:8839–8845

    Article  Google Scholar 

  20. Lukey MJ, Parkin A, Roessler MM, Murphy BJ, Harmer J, Palmer T, Sargent F, Armstrong FA (2010) How Escherichia coli is equipped to oxidize hydrogen under different redox conditions. J Biol Chem 285:3928–3938

    Article  Google Scholar 

  21. Trchounian K, Pinske C, Sawers RG, Trchounian A (2011) Dependence on the F0F1-ATP synthase for the activities of the hydrogen-oxidizing hydrogenases 1 and 2 during glucose and glycerol fermentation at high and low pH in Escherichia coli. J Bioenerg Biomembr 43:645–650

    Article  Google Scholar 

  22. Poladyan A, Trchounian K, Sawers G, Trchounian A (2013) Hydrogen-oxidizing hydrogenases 1 and 2 of Escherichia coli regulate the onset of hydrogen evolution and ATPase activity, respectively, during glucose fermentation at alkaline pH. FEMS Microbiol Lett 348:143–148

    Article  Google Scholar 

  23. Menon NK, Robbins J, Wendt JC, Shanmugan KT, Przybyla AE (1991) Mutational analysis and characterization of the Escherichia coli hya operon, which encodes [NiFe] hydrogenase 1. J Bacteriol 173:4851–4861

    Google Scholar 

  24. Menon NK, Chatelus CY, Dervartanian M, Wendt JC, Shanmugam KT, Peck HD, Przybyla AE (1994) Cloning, sequencing, and mutational analysis of the hyb operon encoding Escherichia coli hydrogenase 2. J Bacteriol 176:4416–4423

    Google Scholar 

  25. Sauter M, Bohm R, Bock A (1992) Mutational analysis of the operon (hyc) determining hydrogenase 3 formation in Escherichia coli. Mol Microbiol 6:1523–1532

    Article  Google Scholar 

  26. Andrews SC, Berks BC, Mcclay J, Ambler A, Quail MA, Golby P, Guest JR (1997) A 12-cistron Escherichia coli operon (hyf) encoding a putative proton-translocating formate hydrogenlyase system. Microbiology 143:3633–3647

    Article  Google Scholar 

  27. Richard DJ, Sawers G, Sargent F, McWalter L, Boxer DH (1999) Transcriptional regulation in response to oxygen and nitrate of the operons encoding the [NiFe] hydrogenases 1 and 2 of Escherichia coli. Microbiology 145:2903–2912

    Article  Google Scholar 

  28. Hube M, Blokesch M, Bock A (2002) Network of hydrogenase maturation in Escherichia coli: role of accessory proteins HypA and HybF. J Bacteriol 184:3879–3885

    Article  Google Scholar 

  29. Trchounian K (2012) Transcriptional control of hydrogen production during mixed carbon fermentation by hydrogenases 4 (hyf) and 3 (hyc) in Escherichia coli. Gene 506:156–160

    Article  Google Scholar 

  30. Trchounian K, Sanchez-Torres V, Wood TK, Trchounian A (2011) Escherichia coli hydrogenase activity and H2 production under glycerol fermentation at a low pH. Int J Hydrog Energ 36:4323–4331

    Article  Google Scholar 

  31. Sanchez-Torres V, Yusoff MYM, Nakano C, Maeda M, Ogawa HI, Wood TK (2013) Influence of Escherichia coli hydrogenases on hydrogen fermentation from glycerol. Int J Hydrog Energ 38:3905–3912

    Article  Google Scholar 

  32. Trchounian K, Soboh B, Sawers RG, Trchounian A (2013) Contribution of hydrogenase 2 to stationary phase H2 production by Escherichia coli during fermentation of glycerol. Cell Biochem Biophys 66:103–108

    Article  Google Scholar 

  33. Blbulyan S, Avagyan A, Poladyan A, Trchounian A (2011) Role of Escherichia coli different hydrogenases in H+ efflux and the FOF1-ATPase activity during glycerol fermentation at different pH. Biosci Rep 31:179–184

    Article  Google Scholar 

  34. Trchounian A (2004) Escherichia coli proton-translocating F0F1-ATP synthase and its association with solute secondary transporters and/or enzymes of anaerobic oxidation-reduction under fermentation. Biochem Biophys Res Commun 315:1051–1057

    Article  Google Scholar 

  35. Trchounian K, Blbulyan S, Trchounian A (2013) Hydrogenase activity and proton-motive force generation by Escherichia coli during glycerol fermentation. J Bioenerg Biomembr 45:253–260

    Article  Google Scholar 

  36. Trchounian K, Trchounian A (2013) Escherichia coli multiple [Ni-Fe]-hydrogenases are sensitive to osmotic stress during glycerol fermentation but at different pHs. FEBS Lett 587:3562–3566

    Article  Google Scholar 

  37. Pettigrew DW (1986) Inactivation of Escherichia coli glycerol kinase by 5,5′-dithiobis(2-nitrobenzoic acid) and N-ethylmaleimide: evidence for nucleotide regulatory binding sites. Biochemistry 25:4711–4718

    Article  Google Scholar 

  38. Hakobyan L, Gabrielyan L, Trchounian A (2012) Relationship of proton motive force and the F0F1-ATPase with bio-hydrogen production activity of Rhodobacter sphaeroides: effects of diphenylene iodonium, hydrogenase inhibitor, and its solvent dimethylsulphoxide. J Bioenerg Biomembr 44:495–502

    Article  Google Scholar 

  39. Trchounian K, Sargsyan H, Trchounian A (2014) Hydrogen production by Escherichia coli depends on glucose concentration and its combination with glycerol at different pHs. Int J Hydrog Energ 39:6419–6423

    Article  Google Scholar 

  40. Bagramyan K, Mnatsakanyan N, Poladyan A, Vassilian A, Trchounian A (2002) The roles of hydrogenases 3 and 4, and the F0F1-ATPase, in H2 production by Escherichia coli at alkaline and acidic pH. FEBS Lett 516:172–178

    Article  Google Scholar 

  41. Trchounian K, Trchounian A (2014) Hydrogen producing activity by Escherichia coli hydrogenase 4 (hyf) depends on glucose concentration. Int J Hydrog Energ 39:16914–16918

    Article  Google Scholar 

  42. Fernandez VM (1983) An electrochemical cell for reduction of biochemical: its application to the study of th effect of pH and redox potential on the activity of hydrogenases. Anal Biochem 130:54–59

    Article  Google Scholar 

  43. Eltsova ZA, Vasilieva LG, Tsygankov AA (2010) Hydrogen production by recombinant strains of Rhodobacter sphaeroides using a modified photosynthetic apparatus. Appl Biochem Microbiol 46:487–491

    Article  Google Scholar 

  44. Noguchi K, Riggins DP, Eldahan KC, Kitko RD, Slonczewski JL (2010) Hydrogenase-3 contributes to anaerobic acid resistance of Escherichia coli. PLoS One 5:e10132

    Article  Google Scholar 

  45. Piskarev IM, Ushkanov VA, Aristova NA, Likhachev PP, Myslivets TS (2010) Establishment of the redox potential of water saturated with hydrogen. Biophysics 55:13–17

    Article  Google Scholar 

  46. Bagramyan KA, Martirosov SM (1989) Formation of an ion transport supercomplex in Escherichia coli. An experimental model of direct transduction of energy. FEBS Lett 249:149–152

    Article  Google Scholar 

  47. Maeda T, Wood TK (2008) Formate detection by potassium permanganate for enhanced hydrogen production in Escherichia coli. Int J Hydrog Energ 33:2409–2412

    Article  Google Scholar 

  48. Hu H, Wood TK (2010) An evolved Escherichia coli strain for producing hydrogen and ethanol from glycerol. Biochem Biophys Res Commun 391:1033–1038

    Article  Google Scholar 

  49. Tran KT, Maeda M, Wood TK (2014) Metabolic engineering of Escherichia coli to enhance hydrogen production from glycerol. Appl Microbiol Biotechnol 98:4757–4770

    Article  Google Scholar 

  50. Self W, Shanmugam KT (2000) Isolation and characterization of mutated FhlA proteins which activate transcription of the hyc operon (formate hydrogenlyase) of Escherichia coli in the absence of molybdate. FEMS Microbiol Lett 184:47–52

    Article  Google Scholar 

  51. Trchounian K, Trchounian A (2013) Escherichia coli hydrogenase 4 (hyf) and hydrogenase 2 (hyb) contribution in H2 production during mixed carbon (glucose and glycerol) fermentation at pH 7.5 and pH 5.5. Int J Hydrog Energ 38:3919–3927

    Article  Google Scholar 

  52. Maeda T, Sanchez-Torres V, Wood TK (2007) Escherichia coli hydrogenase 3 is a reversible enzyme possessing hydrogen uptake and synthesis activities. Appl Microbiol Biotechnol 76:1036–1042

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Trchounian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Trchounian, K., Trchounian, A. (2015). Clean Energy Technology Development: Hydrogen Production by Escherichia coli During Glycerol Fermentation. In: Dincer, I., Colpan, C., Kizilkan, O., Ezan, M. (eds) Progress in Clean Energy, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-17031-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17031-2_39

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17030-5

  • Online ISBN: 978-3-319-17031-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics