Skip to main content

Hydrogen Generation and Storage from Sodium Borohydride

  • Chapter
Progress in Clean Energy, Volume 2

Abstract

Hydrogen generator with circulation scheme that generates high-purity hydrogen from the solution of sodium borohydride has been developed. In circulation scheme working solution is repeatedly passed through catalytic unit in reactor; the velocity of solution flow and mass transfer processes are more intensive and the entire catalyst is working under approximately the same conditions. Alumina-supported Pt-, Pd-, and Ni-granulated materials have been used as model catalysts during performance testing of the hydrogen generator. Instead of water-alkaline solution it is proposed to use sodium metaborate solution saturated at room temperature as a solvent and stabilizer to prepare working solutions. Optimal parameters of working process (working solution composition, temperature, pressure) were defined. Technical specifications of the generator allow achieving hydrogen performance up to 3 Nm3/h and higher.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schlesinger HI, Brown HC, Finholt AE, Gilbreath JR, Hoekstra HR, Hyde EK (1953) Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen. J Am Chem Soc 75(1):215–226

    Article  Google Scholar 

  2. Amendola SC, Sharp-Goldman SL, Janjua MS, Kelly MT, Petillo PJ, Binder M (2000) An ultrasafe hydrogen generator: aqueous, alkaline borohydride solutions and Ru catalyst. J Power Sources 85(2):186–189

    Article  Google Scholar 

  3. Kojima Y, Suzuki K, Fukumoto K, Sasaki M, Yamamoto T, Kawai Y, Hayashi H (2002) Hydrogen generation using sodium borohydride solution and metal catalyst coated on metal oxide. Int J Hydrog Energy 27(10):1029–1034

    Article  Google Scholar 

  4. Liu BH, Li ZP, Suda S (2009) Solid sodium borohydride as a hydrogen source for fuel cells. J Alloys Compd 468(1):493–498

    Article  Google Scholar 

  5. Kojima Y, Haga T (2003) Recycling process of sodium metaborate to sodium borohydride. Int J Hydrog Energy 28(9):989–993

    Article  Google Scholar 

  6. Park EH, Jeong SU, Jung UH, Kim SH, Lee J, Nam SW, Lim TH, Park YJ, Yu YH (2007) Recycling of sodium metaborate to borax. Int J Hydrog Energy 32(14):2982–2987

    Article  Google Scholar 

  7. Minkina V, Barral K (2007) Preparation of an alkaline alcoholate and its implementation for the regeneration of sodium borohydride from sodium metaborate. European Patent No. 1787952 A1, 2007

    Google Scholar 

  8. Ved AS, Miley GH, Seetaraman TS (2010) Recycling sodium metaborate to sodium borohydride using wind-solar energy system for direct borohydride fuel cell. In: Proceedings of the ASME 2010 eighth international fuel cell science, engineering and technology conference fuelcell2010, June 14–16, 2010, New York, USA, vol 1. pp 139–141

    Google Scholar 

  9. Kojima Y, Suzuki K-I, Fukumoto K, Kawai Y, Kimbara M, Nakanishi H, Matsumoto S (2004) Development of 10 kW-scale hydrogen generator using chemical hydride. J Power Sources 125(1):22–26

    Article  Google Scholar 

  10. Rusta-Sellehy A, Frank D, Rady-Pentek R (2005) Chemical hydride hydrogen generation system and an energy system incorporating the same. US Patent No. 6946104 B2, 2005

    Google Scholar 

  11. Mohring RM, Strizki M (2006) System for hydrogen generation. US Patent No. 7083657 B2, 2006

    Google Scholar 

  12. Zhang J, Zheng Y, Gore JP, Mudawar I, Fisher TS (2007) 1 kWe sodium borohydride hydrogen generation system: part II: reactor modeling. J Power Sources 170(1):150–159

    Article  Google Scholar 

  13. Shurtleff K, Ladd E, Patton J (2010) System for generating hydrogen from a chemical hydride. US Patent No. 7651542 B2, 2010

    Google Scholar 

  14. Muir SS, Yao X (2011) Progress in sodium borohydride as a hydrogen storage material: development of hydrolysis catalysts and reaction systems. Int J Hydrog Energy 36(10):5983–5997

    Article  Google Scholar 

  15. Tang S-B, Qiu F-L, Liu S-J (1996) Combined partial oxidation and carbon dioxide reforming of methane process to synthesis gas. J Nat Gas Chem 8(3):272–277

    Google Scholar 

  16. Tsang SC, Claridge JB, Green MLH (1995) Recent advances in the conversion of methane to synthesis gas. Catal Today 23(1):3–15

    Article  Google Scholar 

  17. Beretta A, Forzatti P (2004) Partial oxidation of light paraffins to synthesis gas in short contact-time reactors. Chem Eng J 99(3):219–226

    Article  Google Scholar 

  18. Adams RM, Siedel AR (1964). In: Adams RM (ed) Boron, metalloboron compounds and boranes. Interscience Publisher, New York, pp 380–390

    Google Scholar 

  19. Charles D Hodgman MS (ed) (1961–1962) Handbook of chemistry and physics. Chemical Rubber Publishing Co, Cleveland, OH

    Google Scholar 

  20. Dai HB, Liang Y, Wang P, Yao XD, Rufford T, Lu M, Cheng HM (2008) High-performance cobalt–tungsten–boron catalyst supported on Ni foam for hydrogen generation from alkaline sodium borohydride solution. Int J Hydrog Energy 33(16):4405–4412

    Article  Google Scholar 

  21. Liang Y, Dai HB, Ma LP, Wang P, Cheng H-M (2010) Hydrogen generation from sodium borohydride solution using a ruthenium supported on graphite catalyst. Int J Hydrog Energy 35(7):3023–3028

    Article  Google Scholar 

  22. Minkina VG, Shabunya SI, Kalinin VI, Martynenko VV, Smirnova AL (2008) Long-term stability of sodium borohydride for hydrogen generation. Int J Hydrog Energy 33(20):5629–5635

    Article  Google Scholar 

  23. Minkina VG, Shabunya SI, Kalinin VI, Martynenko VV, Smirnova AL (2012) Stability of alkaline aqueous solutions of sodium borohydride. Int J Hydrog Energy 37(4):3313–3318

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina G. Minkina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Minkina, V.G., Shabunya, S.I., Kalinin, V.I. (2015). Hydrogen Generation and Storage from Sodium Borohydride. In: Dincer, I., Colpan, C., Kizilkan, O., Ezan, M. (eds) Progress in Clean Energy, Volume 2. Springer, Cham. https://doi.org/10.1007/978-3-319-17031-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17031-2_36

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17030-5

  • Online ISBN: 978-3-319-17031-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics