Skip to main content

Layered Double Hydroxide Materials in Photocatalysis

  • Chapter
Photofunctional Layered Materials

Part of the book series: Structure and Bonding ((STRUCTURE,volume 166))

Abstract

Layered double hydroxide (LDH)-based photocatalysts have attracted great attention in the fields of environment and energy (e.g., degradation of pollutants, water splitting for solar fuel production), owing to their unique intercalation structure with highly dispersed metal cations and exchangeable anions, large specific surface areas, and remarkable adsorption capacities. This chapter aims to review and summarize the recent advances in the synthesis and photocatalytic applications of LDH-based materials. Typically, several important strategies have been developed for the fabrication of LDH-based photocatalysts by tuning the composition of the host layers, intercalating guest sensitizers, and constructing nanocomposites. The obtained photocatalysts exhibit excellent performances in the fields of pollutant degradation, water splitting, and reduction of CO2 into carbon sources. The fabrication and application of LDH-based photocatalysts represent a promising direction in the development of LDH-based multifunctional materials, which will contribute to the progress of chemistry and material science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Linsebigler AL, Lu G, Yates JT Jr (1995) Chem Rev 95:735

    CAS  Google Scholar 

  2. Zheng YH, Zheng LR, Zhan YY, Lin XY, Zheng Q, Wei KM (2007) Inorg Chem 46:6980

    CAS  Google Scholar 

  3. Niu MT, Huang F, Cui LF, Huang P, Yu YL, Wang YS (2010) ACS Nano 4:681

    CAS  Google Scholar 

  4. Fu HB, Pan CS, Yao WQ, Zhu YF (2005) J Phys Chem B 109:22432

    CAS  Google Scholar 

  5. Tada H, Mitsui T, Kiyonaga T, Akita T, Tanaka K (2006) Nat Mater 5:782

    CAS  Google Scholar 

  6. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269

    CAS  Google Scholar 

  7. Wang C, Xie ZG, deKrafft KE, Lin WL (2011) J Am Chem Soc 133:13445

    CAS  Google Scholar 

  8. Kamat PV (2007) J Phys Chem C 111:2834

    CAS  Google Scholar 

  9. Williams G, Seger B, Kamat PV (2008) ACS Nano 2:1487

    CAS  Google Scholar 

  10. Subramanian V, Wolf EE, Kamat PV (2004) J Am Chem Soc 126:4943

    CAS  Google Scholar 

  11. Yao Y, Li G, Ciston S, Lueptow RM, Gray KA (2008) Environ Sci Technol 42:4952

    CAS  Google Scholar 

  12. Khan AI, O’Hare D (2002) J Mater Chem 12:3191

    CAS  Google Scholar 

  13. Sels B, De Vos D, Buntinx M, Pierard F, Mesmaeker KD, Jacobs P (1999) Nature 400:855

    CAS  Google Scholar 

  14. Shao MF, Ning FY, Zhao JW, Wei M, Evans DG, Duan X (2012) J Am Chem Soc 134:1071

    CAS  Google Scholar 

  15. Gu Z, Thomas AC, Xu ZP, Campbell JH, Lu GQ (2008) Chem Mater 20:3715

    CAS  Google Scholar 

  16. Shao MF, Ning FY, Zhao YF, Zhao JW, Wei M, Evans DG, Duan X (2012) Chem Mater 24:1192

    CAS  Google Scholar 

  17. Liu J, Zhang G (2014) Phys Chem Chem Phys 16:8178

    CAS  Google Scholar 

  18. Lee Y, Choi JH, Jeon HJ, Choi KM, Lee JW, Kang JK (2011) Energy Environ Sci 4:914

    CAS  Google Scholar 

  19. Shu X, Zhang W, He J, Gao F, Zhu Y (2006) Solid State Sci 8:634

    CAS  Google Scholar 

  20. Shu X, He J, Chen D (2008) J Phys Chem C 112:4151

    CAS  Google Scholar 

  21. Tian J, Zhao Z, Kumar A, Boughton R, Liu H (2014) Chem Soc Rev 43:6920

    CAS  Google Scholar 

  22. Zhao Y, Li B, Wang Q, Gao W, Wang CJ, Wei M, Evans DG, Duan X, O’Hare D (2014) Chem Sci 5:951

    CAS  Google Scholar 

  23. Shao M, Han J, Wei M, Evans DG, Duan X (2011) Chem Eng J 168:519

    CAS  Google Scholar 

  24. Zhao Y, Chen P, Zhang B, Su DS, Zhang S, Tian L, Lu J, Li Z, Cao X, Wang B, Wei M, Evans DG, Duan X (2012) Chem Eur J 18:11949

    CAS  Google Scholar 

  25. Mendoza-Damián G, Tzompantzi F, Mantilla A, Barrera A, Lartundo-Rojas L (2013) J Hazard Mater 263P:67

    Google Scholar 

  26. Wang X, Wu P, Huang Z, Zhu N, Wu J, Li P, Dang Z (2014) Appl Clay Sci 95:95

    CAS  Google Scholar 

  27. Silva CG, Bouizi Y, Fornes V, Garcıa H (2009) J Am Chem Soc 131:13833

    Google Scholar 

  28. Parida K, Mohapatra L (2012) Dalton Trans 41:1173

    CAS  Google Scholar 

  29. Zhao Y, Zhang S, Li B, Yan H, He S, Tian L, Shi W, Ma J, Wei M, Evans DG, Duan X (2011) Chem Eur J 17:13175

    CAS  Google Scholar 

  30. Mohapatra L, Parida KM (2014) Phys Chem Chem Phys 16:16985

    CAS  Google Scholar 

  31. Parida K, Mohapatra L, Baliarsingh N (2012) J Phys Chem C 116:22417

    CAS  Google Scholar 

  32. Parida K, Satpathy M, Mohapatra L (2012) J Mater Chem 22:7350

    CAS  Google Scholar 

  33. Baliarsingh N, Mohapatra L, Parida K (2013) J Mater Chem A 1:4236

    CAS  Google Scholar 

  34. Prince J, Tzompantzi F, Mendoza-Damián G, Hernández-Beltrán F, Valente JS (2015) Appl Catal B 163:352

    CAS  Google Scholar 

  35. Huang L, Chua S, Wang J, Kong F, Luo L, Wang Y, Zou Z (2013) Catal Today 212:81

    CAS  Google Scholar 

  36. Zhao Y, Wei M, Lu J, Wang ZL, Duan X (2009) ACS Nano 3:4009

    CAS  Google Scholar 

  37. He S, Zhang S, Lu J, Zhao Y, Ma J, Wei M, Evans DG, Duan X (2011) Chem Commun 47:10797

    CAS  Google Scholar 

  38. Lan M, Fan GL, Sun W, Li F (2013) Appl Surf Sci 282:937

    CAS  Google Scholar 

  39. Seftel EM, Puscasu MC, Mertens M, Cool P, Carja G (2014) Appl Catal B 150:157

    Google Scholar 

  40. Cho S, Jang JW, Kong KJ, Kim ES, Lee KH, Lee JS (2013) Adv Funct Mater 23:2348

    CAS  Google Scholar 

  41. Yan D, Lu J, Ma J, Wei M, Evans DG, Duan X (2011) Angew Chem Int Ed 50:720

    CAS  Google Scholar 

  42. Wang Q, O’Hare D (2012) Chem Rev 112:4124

    CAS  Google Scholar 

  43. He S, An Z, Wei M, Evans DG, Duan X (2013) Chem Commun 49:5912

    CAS  Google Scholar 

  44. Zhang H, Pan D, Duan X (2009) J Phys Chem C 113:12140

    CAS  Google Scholar 

  45. Takanabe K, Kamata K, Wang XC, Antonietti M, Kubota J, Domen K (2010) Phys Chem Chem Phys 12:13020

    CAS  Google Scholar 

  46. Parayil SK, Baltrusaitis J, Wu CM, Koodali RT (2013) Int J Hydrogen Energy 38:2656

    CAS  Google Scholar 

  47. Guo Y, Li D, Hu C, Wang Y, Wang E (2001) Int J Inorg Mater 3:347

    CAS  Google Scholar 

  48. Guo Y, Li D, Hu C, Wang E, Zou Y, Ding H, Feng S (2002) Microporous Mesoporous Mater 56:153

    CAS  Google Scholar 

  49. Mohapatraab L, Parida KM (2014) Phys Chem Chem Phys 16:16985

    Google Scholar 

  50. Xiong Z, Xu Y (2007) Chem Mater 19:1452

    CAS  Google Scholar 

  51. Chen G, Qian S, Tu X, Wei X, Zou J, Leng L, Luo S (2013) Appl Surf Sci 293:345

    Google Scholar 

  52. Wang C, Yin L, Zhang L, Liu N, Lun N, Qi Y (2010) ACS Appl Mater Interfaces 2:3373

    CAS  Google Scholar 

  53. Height MJ, Pratsinis SE, Mekasuwandumrong O, Praserthdam P (2006) Appl Catal B Environ 63:305

    CAS  Google Scholar 

  54. Li H, Bian Z, Zhu J, Huo Y, Li H, Lu Y (2007) J Am Chem Soc 129:4538

    CAS  Google Scholar 

  55. Corma A, Atienzar P, Garcia H, Chane-Ching JY (2004) Nat Mater 3:394

    CAS  Google Scholar 

  56. Kato H, Kudo A (2003) Catal Today 78:561

    CAS  Google Scholar 

  57. Sato J, Kobayashi H, Ikarashi K, Saito N, Nishiyama H, Inoue Y (2004) J Phys Chem B 108:4369

    CAS  Google Scholar 

  58. Yu JC, Yu JG, Ho WK, Zhang LZ (2001) Chem Commun 19:1942

    Google Scholar 

  59. Jing LQ, Sun XJ, Shang J, Cai WM, Xu ZL, Du YG, Fu HG (2003) Sol Energ Mater Sol Cells 79:133

    CAS  Google Scholar 

  60. Carja G, Nakajima A, Dranca S, Dranca C, Okada K (2010) J Phys Chem C 114:14722

    CAS  Google Scholar 

  61. Shao L, Yao Y, Quan S, Wei H, Wang R, Guo Z (2014) Mater Lett 114:111

    CAS  Google Scholar 

  62. Huang Z, Wu P, Lu Y, Wang X, Zhu N, Dang Z (2013) J Hazard Mater 246–247:70

    Google Scholar 

  63. Lu R, Xu X, Chang J, Zhu Y, Xu S, Zhang F (2012) Appl Catal B 111–112:389

    Google Scholar 

  64. Gunjakar JL, Kim TW, Kim HN, Kim IY, Hwang SJ (2011) J Am Chem Soc 133:14998

    CAS  Google Scholar 

  65. Zhang H, Pan D, Zou K, He J, Duan X (2009) J Mater Chem 19:3069

    CAS  Google Scholar 

  66. Ay AN, Zumreoglu-Karan B, Temel A, Rives V (2009) Inorg Chem 48:8871

    CAS  Google Scholar 

  67. Mi F, Chen X, Ma Y, Yin S, Yuan F, Zhang H (2011) Chem Commun 47:12804

    CAS  Google Scholar 

  68. Chen D, Li Y, Zhang J, Zhou J, Guo Y, Liu H (2012) Chem Eng J 185–186:120

    Google Scholar 

  69. Cushing SK, Li JT, Meng FK, Senty TR, Suri S, Zhi MJ, Li M, Bristow AD, Wu NQ (2012) J Am Chem Soc 134:15033

    CAS  Google Scholar 

  70. Feng XJ, Sloppy JD, LaTemp TJ, Paulose M, Komarneni S, Bao NZ, Grimes CA (2011) J Mater Chem 21:13429

    CAS  Google Scholar 

  71. Hong J, Wang Y, Pan J, Zhong Z, Xu R (2011) Nanoscale 3:4655

    CAS  Google Scholar 

  72. Wang P, Huang BB, Qin XY, Zhang XY, Dai Y, Wei JY, Whangbo MH (2008) Angew Chem Int Ed 120:8049

    Google Scholar 

  73. Han L, Wang P, Zhu CZ, Zhai YM, Dong SJ (2011) Nanoscale 3:2931

    CAS  Google Scholar 

  74. Fan H, Zhu J, Sun J, Zhang S, Ai S (2013) Chem Eur J 19:2523

    CAS  Google Scholar 

  75. Nocchetti M, Donnadio A, Ambrogi V, Andreani P, Bastianini M, Pietrellac D, Latterini L (2013) J Mater Chem B 1:2383

    CAS  Google Scholar 

  76. Sun J, Zhang Y, Cheng J, Fan H, Zhu J, Wang X, Ai S (2014) J Mol Catal A Chem 382:146

    CAS  Google Scholar 

  77. Wang H, Xiang X, Li F (2010) AIChE J 56:768

    CAS  Google Scholar 

  78. Eda G, Chhowalla M (2010) Adv Mater 22:2392

    CAS  Google Scholar 

  79. Rao CV, Reddy ALM, Ishikawa Y, Ajayan PM (2011) ACS Appl Mater Interfaces 3:2966

    CAS  Google Scholar 

  80. Mathkar A, Tozier D, Cox P, Ong PJ, Galande C, Balakrishnan K, Reddy ALM, Ajayan PM (2012) J Phys Chem Lett 3:986

    CAS  Google Scholar 

  81. Huang Z, Wu P, Gong B, Fang Y, Zhu N (2014) J Mater Chem A 2:5534

    CAS  Google Scholar 

  82. Li B, Zhao Y, Zhang S, Gao W, Wei M (2013) ACS Appl Mater Interfaces 5:10233

    CAS  Google Scholar 

  83. Fujishima A, Honda K (1972) Nature 238:37

    CAS  Google Scholar 

  84. Kato H, Asakura K, Kudo A (2003) J Am Chem Soc 125:3082

    CAS  Google Scholar 

  85. Armaroli N, Balzani V (2007) Angew Chem Int Ed 46:52

    CAS  Google Scholar 

  86. Muruganandham M, Swaminathan M (2006) J Hazard Mater 135:78

    CAS  Google Scholar 

  87. Takeuchi M, Kimura T, Hidaka M, Rakhmawaty D, Anpo M (2007) J Catal 246:235

    CAS  Google Scholar 

  88. Zhu J, Fan H, Sun J, Ai S (2013) Sep Purif Technol 120:134

    CAS  Google Scholar 

  89. Li H, Deng Q, Liu J, Hou W, Du N, Zhang R, Tao X (2014) Catal Sci Technol 4:102

    Google Scholar 

  90. Lin BZ, Ping S, Zhou YI, Jiang SF, Gao BF, Chen YL (2014) J Hazard Mater 280:156

    CAS  Google Scholar 

  91. Zhao XF, Wang L, Xin X, Ler XD, Xu SL, Zhang FZ (2012) AIChE J 58:573

    CAS  Google Scholar 

  92. Tian L, Zhao Y, He S, Wei M, Duan X (2012) Chem Eng J 184:261

    CAS  Google Scholar 

  93. Mohapatra L, Parida KM (2012) Sep Purif Technol 91:73

    CAS  Google Scholar 

  94. Kim JS, Lee Y, Lee DK, Lee JW, Kang JK (2014) J Mater Chem A 2:4136

    CAS  Google Scholar 

  95. Gunjakar JL, Kim IY, Lee JM, Lee NS, Hwang SJ (2013) Energy Environ Sci 6:1008

    CAS  Google Scholar 

  96. Shao M, Ning F, Wei M, Evans DG, Duan X (2014) Adv Funct Mater 24:580

    CAS  Google Scholar 

  97. Matsuoka M, Kitano M, Takeuchi M, Tsujimaru K, Anpo M, Thomas JM (2007) Catal Today 122:51

    CAS  Google Scholar 

  98. Chen XB, Shen SH, Guo LJ, Mao SS (2010) Chem Rev 110:6503

    CAS  Google Scholar 

  99. Ahemed N, Shibata Y, Taniguchi T, Izumi Y (2011) J Catal 279:123

    Google Scholar 

  100. Ahmed N, Morikawa M, Izumi Y (2012) Catal Today 185:263

    CAS  Google Scholar 

  101. Morikawa M, Ogura Y, Ahmek N, Kawamura S, Mikami G, Okamoto S, Izumi Y (2014) Catal Sci Technol 4:1644

    CAS  Google Scholar 

  102. Teramura K, Iguchi S, Mizuno Y, Shishido T, Tanaka T (2012) Angew Chem 124:8132

    Google Scholar 

  103. Katsumata KI, Sakai K, Ikeda K, Carja G, Matsushita N (2013) Mater Lett 107:138

    CAS  Google Scholar 

  104. Yang XJ, Chen B, Li XB, Zheng LQ, Wu LZ, Tung CH (2014) Chem Commun 50:6664

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the 973 Program (Grant No. 2011CBA00504), the National Natural Science Foundation of China (NSFC), the Beijing Natural Science Foundation (2132043), and the Scientific Fund from Beijing Municipal Commission of Education. M. Wei particularly appreciates the financial aid from the China National Funds for Distinguished Young Scientists of the NSFC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Shao, M., Wei, M., Evans, D.G., Duan, X. (2015). Layered Double Hydroxide Materials in Photocatalysis. In: Yan, D., Wei, M. (eds) Photofunctional Layered Materials. Structure and Bonding, vol 166. Springer, Cham. https://doi.org/10.1007/978-3-319-16991-0_3

Download citation

Publish with us

Policies and ethics