Skip to main content

Sorghum Fungal Diseases

  • Chapter
Sustainable Agriculture Reviews

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 16))

Abstract

Sorghum is a vital life-sustaining food crop for humans and livestock. Sorghum is also a biofuel crop of growing importance. Moreover sorghum is drought and heat tolerant, and is an important crop in arid and semi-arid regions where major cereals fail to grow successfully. Sorghum thus constitutes a major staple foods for the world’s poorest people. Sorghum is an important food crop within traditional low input, cereal-based farming systems in Africa, where 41 % of the world-wide area of this crop's production is located. However, the crop suffers from low yields due to a number of biotic stresses.

Sorghum is distinguished among other cereals by its unusually broad range of diseases which is one of the most important constraints to its production. The most destructive sorghum diseases reported are fungal diseases which are widespread globally and result in huge losses in yields both in terms of the quantity and quality of the grains. Anthracnose, turcicum leaf blight, charcoal root rot and other fungal diseases are epidemics in many parts of the world. They cause severe crop losses depending upon the crop stage, susceptibility of cultivar and the prevailing environmental conditions. Food security issues have prompted many of the national as well as international programmes such as International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), India, African programmes which actively encourage farmers to grow sorghum. Whilst traditional landrace materials showed some tolerance to many of these problems, often by escaping disease through late maturity associated with photoperiodicity, or a tall growth habit, the improved materials are frequently of short to intermediate height and early maturation and therefore more susceptible to disease problems, particularly fungal diseases.

Knowledge on disease epidemics and characterization of pathosystems is particularly important for long term disease management to achieve significant impact in reducing aspects of poverty and food and security in sorghum based semi arid cropping systems. This chapter reviews the current status of information on the most common fungal diseases of sorghum and discusses various aspects including disease significance and symptoms, genetics of resistance and host pathogen interaction and, management of disease. Besides the new approaches in disease control such as Quantitative Trait Loci mapping and transgenic approaches have also been discussed. Molecular markers and quantitative trait loci (QTL) analysis have been useful for locating the resistance gene(s) on the genome of sorghum and to carry out marker-assisted selection for some of the fungal diseases. It has provided foundation for fine-mapping and advancing the molecular breeding for others. Furthermore, the markers tagged to QTL regions can be used to enhance the sorghum breeding program for fungal resistance through marker-assisted selection and map-based cloning. As we have the whole genome sequence available of sorghum, it will be helpful to advance the molecular breeding by facilitating the positional cloning as well as marker-assisted selection. This will also be instrumental in determining the function of disease resistance genes available in the sorghum genome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFLP:

Amplified fragment length polymorphism

BSA:

Bulk segregant analysis

C. gloeosporioides :

Colletotrichum gloeosporioides

C. sorghi :

Claviceps sorghi

E. turcicum :

Exserohilum turcicum

FAO:

Food and Agriculture Organization

FAOSTAT:

Food and Agricultural Organization Statistical Databases

ICRISAT:

International Crops Research Institute for the Semi-Arid Tropics

ISAVN:

International Sorghum Anthracnose Virulence Nursery

ITS:

Internal transcribed spacer

MAS:

Marker assisted selection

P. sorghi :

Peronosclerospora sorghi

P. sorghi :

Peronosclerospora sorghi

PCR:

Polymerase chain reaction

PDA:

Potato dextrose agar

PR:

Pathogenesis Related

QTL:

Quantitative trait loci

RAPD:

Random amplified length polymorphism

RFLP:

Restriction fragment length polymorphism

RIP:

Ribosome-inactivating proteins

S. cruenta :

Sporisorium cruenta

SCARs:

Sequence-characterized amplified regions

sp:

Species

TLB:

Turcicum leaf blight

TLB:

Turcicum leaf blight

References

  • Agrama HA, Houssin SF, Tarek MA (2002) Cloning of AFLP markers linked to resistance to Peronosclerospora sorghi in maize. Mol Genet Genomics 267(6):814–819. doi:10.1007/s00438-002-0713-2

    CAS  PubMed  Google Scholar 

  • Agrios GN (1997) Plant pathology, 4th edn. Elsevier Academic Press, New York, 43(4):635. doi:10.1046/j.1365-3059.1998.0223d.x

  • Aguero ME, Gevens A, Nicholson RL (2002) Interaction of Cochliobolus heterostrophus with phytoalexin inoclusions in Sorghum bicolor. Physiol Mol Biol Plant Pathol 61:267–271

    Google Scholar 

  • Ali MEK, Warren HL (1987) Anthracnose of sorghum. In: De Milliano WAJ, Frederiksen RA, Bengston GD (eds) Sorghum and millets diseases: a second world review. ICRISAT, Patancheru

    Google Scholar 

  • Anahosur KH, Patil HS (1982) Effect of date of sowing on the incidence of ergot of sorghum. Indian Phytopathol 35(3):507–509

    Google Scholar 

  • Anahosur KH, Rao MVH (1977) A note on the epidemics of charcoal rot of sorghum at Regional Research Station, Dharwad. Sorghum News Lett 20:22

    Google Scholar 

  • Arias RA, Ray JD, Mengistu A, Scheffler BE (2011) Discriminating microsatellites from Macrophomina phaseolina and their potential association to biological functions. Plant Pathol. doi:10.1111/j.1365-3059.2010.02421.x

    Google Scholar 

  • Awika JM, Rooney LW (2004) Sorghum phytochemicals and their potential aspects on human health. Phytochemistry 65:1199–1221. doi:10.1073/pnas 1201700109

    CAS  PubMed  Google Scholar 

  • Bandyopadhyay R, Frederickson DE, McLaren NW, Odvody GN, Ryley MJ (1998) Ergot: a new disease threat to sorghum in the Americas and Australia. Plant Dis 82(4):356–367. doi:10.1094/PDIS.1998.82.4.356

    Google Scholar 

  • Banuelos-Balandrán JJ, Mayek-Perez N (2008) Nondestructive evaluation of pathogenicity of Macrophomina phaseolina (Tassi) Goid in beans. Mexican J Phytopathol 26(1):71–75

    Google Scholar 

  • Basavaraju P, Shetty NP, Shetty HS, de Neergaard E, Jorgensen HJL (2009) Infection biology and defense responses in sorghum against Colletotrichum sublineolum. J Appl Microbiol 107:404–415. doi:10.1111/j.1365-2672.2009.04234.x

    CAS  PubMed  Google Scholar 

  • Beas-Fernandez R, De Santiago-De Santiago A, Hernandez-Delgado S, Mayek-Perez N (2006) Characterization of mexican and non-mexican isolates of Macrophomina phaseolina based on morphological characteristics, pathogenicity on bean seeds and endoglucanase genes. J Plant Pathol 88:53–60. doi:10.4454/jpp.v88i1.830

    CAS  Google Scholar 

  • Bergquist RR, Masias OR (1974) Physiologic specialization in Trichometa-sphaeria turcica f. sp. zeae and T. turcica f. sp. sorghi in Hawaii. Phytopathol 64:645–649. doi:10.1094/Phyto-64-645

    Google Scholar 

  • Bock CH (1995) Studies of the epidemiology, variability and control of sorghum downy mildew (P. sorghi) (Weston and Uppal) Shaw on sorghum in Africa. Ph.D. thesis, University of Reading Department of Agriculture

    Google Scholar 

  • Boora KS, Fredriksen AR, Magill CW (1999) A molecular marker that segregates with sorghum leaf blight resistance in one cross is maternally inherited in another. Mol Gen Genet 261:317–322, Springer-Verlag

    CAS  PubMed  Google Scholar 

  • Carson ML (1995) A new gene in maize conferring the chlorotic halo reaction to infection by Exserohilum turcicum. Plant Dis 79:717–720. doi:10.1094/PD-79-0717

    Google Scholar 

  • Casela CR, Frederiksen RA, Ferreira AS (1993) Evidence for dilatory resistance to anthracnose in sorghum. Plant Dis 77:908–911. doi:10.1094/PD-77-0908

    Google Scholar 

  • Chandrasekaran A, Palanisamy S, Prasad MN (1985) Screening for resistance to sugary disease of sorghum. Sorghum News Lett 28:83–84

    Google Scholar 

  • Cloud GL, Rupe JC (1991) Morphological instability on a chlorate medium of isolates of Macrophomina phaseolina from soybean and sorghum. Phytopathol 81:892–895. doi:10.1094/Phyto-81-892

    Google Scholar 

  • Coleman OH, Stokes IE (1954) The inheritance of resistance to stalk red rot in sorghum. Agro J 44:41–43. doi:10.2134/agronj1954.00021962004600020002x

    Google Scholar 

  • Cook RJ (1980) Fusarium foot rot of wheat and its control in the Pacific Northwest. Plant Dis 64:1061–1066. doi:10.1094/PD-64-1061

    Google Scholar 

  • Cook RJ, Papendicki RI (1972) Influence of water potential of soils and plants on root disease. Ann Rev Phytopathol 10:349–374. doi:10.1146/annurev.py.10.090172.002025

    Google Scholar 

  • Craig J (1986) Downy mildews. In: Frederiksen RA (ed) Compendium of sorghum diseases. APS, St. Paul, pp 24–27

    Google Scholar 

  • Craig J, Frederiksen RA (1983) Differential sporulation of pathotypes of Peronosclerospora sorghi on inoculated sorghum. Plant Dis 67:278–279. doi:10.1094/PD-67-278

    Google Scholar 

  • Craig J, Frederiksen RA (1980) Pathotypes of Peronosclerospora sorghi. Plant Dis 64:778–779. doi:10.1094/PD-64-778

    Google Scholar 

  • Crouch JA, Beirn LA (2009) Anthracnose of cereals and grasses. Fungal Diversity 39:19–44

    Google Scholar 

  • Crouch JA, Clarke BB, Hillman BI (2006) Unraveling evolutionary relationships among the divergent lineages of Colletotrichum using anthracnose disease in turfgrass and corn. Phytopathol 96:46–50. doi:10.1094/PHYTO-96-0046

    CAS  Google Scholar 

  • De la Pena-Devesa D, Hernandez-Delgado S, CantĂş-Almaguer MA, Arroyo Becerra AL, Villalobos-Lopez MA, Gonzalez-Prieto JM, Mayek-Perez N (2009) Methods for Macrophomina phaseolina inoculation in common beans. Ann Rep Bean Imp Coop 52:94–95

    Google Scholar 

  • De Milliano WAJ, Frederiksen RA, Bengston GD (1992) Sorghum and millets diseases: a second world review. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, p 378

    Google Scholar 

  • Degefu Y (1990) Evaluation of Ethiopian maize germplasms for resistance against leaf blight caused by Helminthosporium turcicum. Research Progress Report, Awassa College of Agriculture, Addis Ababa University, Ethiopia

    Google Scholar 

  • De Vries J, Toeniessen G (2001) Securing the harvest: biotechnology breeding and seed system for African crops, 1st edn. CABI Publishing/CAB International, Wallingford, 250 pp

    Google Scholar 

  • Dhingra OD, Sinclair JB (1977) An annotated bibliography of Macrophomina phaseolina 1905–1975. Federal University of Vicosa, MG, Brazil/University of Illinois, Urbana, 244 pp

    Google Scholar 

  • Dhingra OD, Sinclair JB (1978) Biology and pathology of Macrophomina phaseolina. University Press/Federal University of Vicosa, Brazil, Vicosa, p 166

    Google Scholar 

  • Doggett H (1988) Sorghum, 2nd edn, Tropical agriculture series. Longman Scientific and Technical, London

    Google Scholar 

  • Ebiyau J, Oryokot OE (2001) Sorghum {Sorghum bicolor (L.) Moench} Agriculture in Uganda Volume II Crops. National Agricultural Research Organization Fountain Publisher, Uganda, p 572

    Google Scholar 

  • Erpelding JE (2011) Anthracnose field evaluation of sorghum germplasm from Botswana. Plant Protect Sci 47(4):149–156

    Google Scholar 

  • Esele JP (1995) Foliar and head diseases of sorghum. Afri Crop Sci J 3(2):185–189

    Google Scholar 

  • Fallah MP, Pataky JK (1994) Reactions of isolate from mating of races 1 and 23 N of Exserohilum turcicum. Plant Dis 78:767–771. doi:10.1094/PD-78-0767

    Google Scholar 

  • FAO (2011) FAOSTAT. http://faostat.fao.org

  • FAOSTAT (Food and Agriculture Organization of the United Nations) (2003/2009) Statistics Division Online. Available at http://faostat.fao.org

  • Frederickson DE, Leuschner K (1997) Potential use of benomyl for control of ergot (Claviceps africana) in sorghum a lines in Zimbabwe. Plant Dis 81(7):761–765. doi:10.1094/PDIS.1997.81.7.761

    CAS  Google Scholar 

  • Frederickson DE, Mantle PG (1988) The path of infection of sorghum by Claviceps sorghi. Physiol Mol Plant Pathol 33(2):221–234. doi:10.1016/0885-5765(88)90022-7

    Google Scholar 

  • Frederiksen RA, Amador J, Jones BL, Reyes L (1969) Head smut. In: Frederiksen RA (ed) Compendium of Sorghum Diseases. Distribution, symptoms and economic loss from downy mildew caused by Sclerospora sorghi in grain sorghum in Texas. Plant Dis Rep 53:995–998

    Google Scholar 

  • Frederikson RA (2000) Diseases and disease management in sorghum. In: Smith CW, Frederikson RA (eds) Sorghum: origin, history, technology and production. Wiley, New York, pp 497–534

    Google Scholar 

  • Ghongale PR, Somani RB, Pandrangi RB, Shivankar RS (2003) Reaction of sorghum genotypes against Gloeocercospora sorghi causing zonate leaf spot. Agric Sci Digest 22(3):188–190

    Google Scholar 

  • Grewal RPS (1988) Genetic basis of resistance to zonate leaf spot disease in forage sorghum. Theor Appl Genet 76(4):550–554. doi:10.1007/BF00260906

    CAS  PubMed  Google Scholar 

  • Han F, Kilian A, Chen JP, Kudrna D, Steffenson B, Yamamoto K, Matsumoto T, Sasaki T, Kleinhofs A (2002) Sequence analysis of a rice BAC covering the syntenous barley Rpg1 region. Genome 42:1071–1076. doi:10.1139/g99-060

    Google Scholar 

  • Harris HB, Johnson BJ (1967) Sorghum anthracnose: symptoms, importance, and resistance. In: Proceeding of the 5th biennial grain sorghum research and utilization conference grain sorghum producers association (GSPA) and sorghum improvement conference of North America, Lubbock, pp 48–52

    Google Scholar 

  • Hassanein SE, Abdel-Tawab FM, Fahmy EM, El-Karim GG, Alniemi T, Abdelsalam M, Mostafa S, Ramadan AM, Saleh OM, Eissa HF, Bahieldin A (2009) Molecular assessment of chitinase activity in transgenic wheat. Egypt J Genet Cytol 38(2):207–220

    Google Scholar 

  • Hennessy GG, de Milliano WAJ, McLaren CG (1990) Influence of primary weather variables on sorghum leaf blight severity in Southern Africa. Phytopathol 80:943–945. doi:10.1094/Phyto-80-943

    Google Scholar 

  • Hiremath RV, Lakshman M (1990) Performance of high-yielding promising sorghum (Sorghum bicolor) varieties and hybrids against diseases. Indian J Agri Sci 60(1):78–79

    Google Scholar 

  • Hiremath RV, Palakshappa MG (1994) Severe incidence of charcoal rot of sorghum at Dharwad. Curr Sci 33:44

    Google Scholar 

  • His DCH (1956) Stalk rots of sorghum in eastern New Mexico. Plant Dis Rep 40:369–371

    Google Scholar 

  • Ibraheem F, Gaffoor I, Chopra S (2010) Flavonoid phytoalexin-dependent resistance to anthracnose leaf blight requires a functional yellow seed 1 in Sorghum bicolor. Genetics 184:4915–4926. doi:10.1534/genetics.109.111831

    Google Scholar 

  • Iqbal A, Sadia B, Khan AI, Awan FS, Kainth RA, Sadaqat SA (2010) Biodiversity in the sorghum (Sorghum bicolor L. Moench) germplasm of Pakistan. Genet Mol Res 9(2):756–764. doi:10.4238/vol9-2gmr741

    CAS  PubMed  Google Scholar 

  • Isakeit T, Jaster J (2005) Texas has a new pathotype of Peronosclerospora sorghi the cause of sorghum downy mildew. Plant Dis 89(5):529. doi:10.1094/PD-89-0529A

    Google Scholar 

  • Jahagirdar S (2007) Present status and future research needs on the management of charcoal rot of Sorghum. Agric Rev 28(3):197–206

    Google Scholar 

  • Jegera MJ, Gilijamse E, Bock CH, Frinking HD (1998) The epidemiology, variability and control of the downy mildews of pearl millet and sorghum with particular references to Africa. Plant Pathol 47(5):544–569. doi:10.1046/j.1365-3059.1998.00285.x

    Google Scholar 

  • Jones EM (1979) The inheritance of resistance to Colletotrichum graminicola in grain sorghum, Sorghum bicolor. Ph.D. thesis, Purdue University, West Lafayette

    Google Scholar 

  • Julian AM, Crowson HL, de Milliano WJ (1994) Factors influencing epidemiology of Exserohilum turcicum on sorghum. In: Proceedings of Afri Crop Sci 1:263–268

    Google Scholar 

  • Kamala V, Singh SD, Bramel PJ, Rao DM (2002) Sources of resistance to sorghum downy mildew in wild and weedy sorghums. Crop Sci 42:1357–1360. doi:10.2135/cropsci2002.1357

    Google Scholar 

  • Kimber CT (2000) Origins of domesticated sorghum and its early diffusion to India and China. In: Smith CW, Frederikson RA (eds) Sorghum: origin, history, technology, and production. Wiley, New York, pp 3–98

    Google Scholar 

  • King SB, Frederiksen RA (1976) Report on the international sorghum anthracnose virulence nursery. Sorghum News Lett 19:105–106

    Google Scholar 

  • King SB, Mukuru SZ (1994) An overview of sorghum finger millet and pearl millet in Eastern Africa with special attention to diseases. In: Danial DL (ed) Breeding for disease resistance with emphasis on durability. Wageningen Agricultural University, Wageningen

    Google Scholar 

  • Klein RR, Rodriguez-Herrera R, Schlueter JA, Klein PE, Yu ZH, Rooney WL (2001) Identification of genomic regions that affect grain-mould incidence and other traits of economic importance in sorghum. Theor App Genet 102:307–319

    CAS  Google Scholar 

  • Kodama O, Miyakawa J, Akatsuka T, Kiyosawa S (1992) Sakuranetin, a flavanone phytoalexin from ultraviolet irradiated rice leaves. Phytochem 31:3807–3809. doi:10.1016/S0031-9422(00)97532-0

    CAS  Google Scholar 

  • Kosambo-Ayoo LM, Bader M, Loerz H, Becker D (2011) Transgenic sorghum (Sorghum bicolor L. Moench) developed by transformation in chitinase and chitosanase genes from Trichoderma harzianum expresses tolerance to anthracnose. Afri J Biotechnol 10(19):3659–3670. doi:10.5897/AJB10.1530

    CAS  Google Scholar 

  • Kucharek T (2000) Foliar and head diseases of sorghum in Florida, Circular (Florida Cooperation Extension Service). Institute of Food and Agriculture Science University of Florida, Gainsville, 1073 pp

    Google Scholar 

  • Kutama AS, Bashir B, James D (2010) Incidence of sorghum diseases in Dawakin-Kudu Local Government Area, Kano State, Nigeria. Afri J Gen Agri 6(4):307–313

    Google Scholar 

  • Lakshmanan P, Jeyarajan R, Palanisamy S (1989) Sources of multiple resistance to major diseases of sorghum in Tamil Nadu, India. Tropical Pest Manage 34:106–107

    Google Scholar 

  • Le Beau FJ, Coleman OH (1950) The inheritance of resistance in sorghum to leaf anthracnose. Agro J 42:33–34. doi:10.2134/agronj1950.00021962004200010006x

    Google Scholar 

  • Lenne JM (1992) Colletotrichum disease in legumes. In: Bailey JA, Jeger MJ (eds) Colletotrichum – biology, pathology and control. CAB International, Wallingford, pp 237–249

    Google Scholar 

  • Leonard KJ, Levy Y, Smith DR (1989) Proposed nomenclature for pathogenic races of Exserohilum turcicum on corn. Plant Dis 73:776–777

    Google Scholar 

  • Lin HJ, Tan DF, Zhang ZM, Lan H, Gao SB, Rong TZ, Pan GT (2008) Analysis of digenic epistatic and QTL × Environment interactions for resistance to banded leaf and sheath blight in Maize (Zea mays). Int J Agri Biol 10(6):605–611

    Google Scholar 

  • Lipps PE, Pratt RC, Hkiza JJ (1997) Interaction of Ht and partial resistance to Exserohilum turcicum to maize. Plant Dis 81(3):277–282. doi:10.1094/PDIS.1997.81.3.277

    Google Scholar 

  • Lo SCC, De Verdier K, Nicholson RL (1999) Accumulation of 3-deoxyanthocyanidin phytoalexins and resistance to Colletotrichum sublineolum in sorghum. Physiol Mol Plant Pathol 55(5):263–273. doi:10.1006/pmpp.1999.0231

    CAS  Google Scholar 

  • Lo SCC, Nicholson R (1998) Reduction of light-induced anthocyanin accumulation in inoculated sorghum mesocotyls. Plant Physiol 116(3):979–989. doi:10.1104/ pp. 116.3.979

    CAS  PubMed Central  PubMed  Google Scholar 

  • Manici LM, Caputo F, Cerato C (1995) Temperature responses of isolates of Macrophomina phaseolina from different climatic regions of sunflower production in Italy. Plant Dis 79(8):834–838. doi:10.1094/PD-79-0834

    Google Scholar 

  • Mathiyazhagan S, Karthikeyan M, Sandosskumar R, Velazhahan R (2006) Analysis of variability among the isolates of Peronosclerospora sorghi from sorghum and corn based on restriction fragment length polymorphism of ITS region of ribosomal DNA. Arch Phytopathol Plant Prot 41(1):31–37. doi:10.1080/03235400600628062

    Google Scholar 

  • Mc Laren NW (1992) Quantifying resistance of sorghum genotypes to the sugary disease pathogen (Claviceps africana). Plant Dis 76(10):986–988. doi:10.1094/PD-76-0986

    Google Scholar 

  • Mc Laren NW (1997) Changes in pollen viability and concomitant increase in the incidence of sorghum ergot with flowering date and implications in selection for escape resistance. J Phytopathol 145:261–265

    Google Scholar 

  • McLaren NW, Wehner FC (1990) Relationship between climatic variables during early flowering of sorghum and the incidence of sugary disease resistance of sugary disease caused by Sphacelia sorghi. J Phytopathol 130(1):82–88. doi:10.1111/j.1439-0434.1990.tb01155.x

    Google Scholar 

  • Mengistu H (1982) Diseases of sorghum at some locations in Ethiopia. Ethiopian J Agri Sci 4(1):45–53

    Google Scholar 

  • Michelmore R (2000) Genomic approaches to plant disease resistance. Curr Opin in Plant Biol 3(2):125–131. doi:10.1016/S1369-5266(99)00050-3

    CAS  Google Scholar 

  • Mihail JD, Taylor SJ (1995) Interpreting variability among isolates of Macrophomina phaseolina in pathogenicity, pycnidium production, and chlorate utilization. Canad J Bot 73:1596–1603. doi:10.1139/b95-172

    Google Scholar 

  • Mittal M, Boora KS (2005) Molecular tagging of gene conferring leaf blight resistance using microsatellites in sorghum {Sorghum bicolor (L.) Moench}. Indian J Exp Biol 43(5):462–466

    CAS  PubMed  Google Scholar 

  • Mohan L, Jeyarajan R (1991) Occurrence of Cerebella andropogonis on secretions of Sphacelia sorghi on sorghum. Sorghum News Lett 32:43

    Google Scholar 

  • Mohan SM, Madhusudhana R, Mathur K, Howarth CJ, Srinivas G, Satish K, Reddy RN, Seetharama N (2009) Co-localization of quantitative trait loci for foliar disease resistance in sorghum. Plant Breed 128:532–535. doi:10.1111/j.1439-0523.2008.01610.x

    Google Scholar 

  • Muchero W, Ehlers JD, Close TJ, Roberts PA (2011) Genic SNP markers and legume synteny reveal candidate genes underlying QTL for Macrophomina phaseolina resistance and maturity in cowpea (Vigna unguiculata (L) Walp). BMC Genomics 12:8. doi:10.1186/1471-2164-12-8

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakamura K (1982) Especialization of isiolĂłgicaem Colletotrichum graminicola (Ces.)Wils (sensuArx. 1957), the causal agent of anthracnose of sorghum. Ph.D. thesis, State Paulista, Jaboticabal University, Jaboticabal

    Google Scholar 

  • Nallathambi P, Sundaram KM, Arumugachamy S (2010) Inheritance of resistance to sorghum downy mildew (Peronosclerospera sorghi) in maize (Zea mays L). Int J Agri Env Biotech 3(3):285–293

    Google Scholar 

  • Narro J, Betancourt VA, Aguirre JL (1992) Sorghum diseases in Mexico. In: de Milliano WAJ, Frederiksen RA, Bengston GD (eds) Sorghum and millet diseases: a second world review. ICRISAT, Pantancheru, pp 75–84

    Google Scholar 

  • Navi S, Bandyopadysy R, Nageswara Rao T, Paul T (2002) An outbreak of sorghum ergot in parts of Andhra Pradesh, India. Int Sorghum and Millet News Lett 43:68–70

    Google Scholar 

  • Ngugi HK, Julian AM, Peacocke BJ (2000) Epidemiology of sorghum anthracnose (Colletotrichum sublineolum) and leaf blight (Exserohilum turcicum) in Kenya. Plant Pathol 49(1):129–140. doi:10.1046/j.1365-3059.2000.00424.x

    Google Scholar 

  • Nicholson RL, Kollipara SS, Vincent JR, Lyons PC, Cadena-Gomez G (1987) Phytoalexin synthesis by the sorghum mesocotyl in response to infection by pathogenic and nonpathogenic fungi. Proc Natl Acad Sci U S A 84(16):5520–5524

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nkonya E, Xavery EP, Akonaay H, Mwangi W, Anandajasekeram P, Verkuijl H, Martella D, Moshi A (1998) Adoption of maize production technologies in Northern Tanzania. International maize and wheat improvement center (CIMMYT) The United Republic of Tanzania and the Southern African Center for Cooperation in Agricultural Research (SACCAR), Mexico

    Google Scholar 

  • Odvody G (1997) Aflatoxin in South Texas Grain Sorghum: Pre- or Postharvest, Poster and Abstract. In: Proceedings of 20th biennial Grain Sorghum Research and Utilization Conference, New Orleans, pp 101–102

    Google Scholar 

  • Ogliaril JB, Guimaraes MA, Camargo LEA (2007) Chromosomal locations of the maize (Zea mays L.) HtP and rt genes that confer resistance to Exserohilum turcicum. Genet Mol Bio 30(3):630–634. doi:10.1590/S1415-47572007000400021

    Google Scholar 

  • Olujong HF, Adipala E, Rubaihayo PR (1996) Diallel analysis for reaction to Exserohilum turcicum of Maize cultivars and crosses. Afri Crop Sci 4(1):19–27

    Google Scholar 

  • Pande S, Mughogho LK, Bandyopadhyay R, Karunakar RI (1991) Variation in pathogenicity and cultural characteristics of sorghum isolates of Colletotrichum graminicola in India. Plant Dis 75(8):778–783. doi:10.1094/PD-75-0778

    Google Scholar 

  • Pande S, Thakur RP, Karunakar RI, Bandyopadhyay R, Reddy BVS (1994) Development of screening methods and identification of stable resistance to anthracnose in sorghum. Field Crop Res 38(3):157–166. doi:10.1016/0378-4290(94)90087-6

    Google Scholar 

  • Pastor-Corrales MA, Frederikson RA (1980) Sorghum anthracnose. In: Williams RJ, Frederiksen RA, Mughogho LK, Bengtson GD (eds) Sorghum diseases- a world review. ICRISAT, Patancheru, pp 289–294

    Google Scholar 

  • Paterson AH (2008) Genomics of sorghum. Int J Plant Genomics 2008:362–451. doi:10.1155/2008/362451

    Google Scholar 

  • Pawar MN (1986) Pathogenic variability and sexuality in Peronosclerospora sorghi (Weston and Uppal) Shaw and comparative nuclear cytology of Peronosclerospora sp. Ph.D. thesis, Texas A & M University, Texas

    Google Scholar 

  • Pearson CAS, Leslie JF, Schwenk FW (1986) Variable chlorate resistance in Macrophomina phaseolina from corn, soybean, and soil. Phytopathol 76:646–649. doi:10.1094/Phyto-76-646

    Google Scholar 

  • Perez-Brandan C, Arzeno JL, Huidobro J, GrĂĽmberg B, Conforto C, Hilton S, Bending GD, Meriles JM, Vargas-Gil S (2012) Long-term effect of tillage systems on soil microbiological, chemical and physical parameters and the incidence of charcoal rot by Macrophomina phaseolina (Tassi) Goid in soybean. Crop Prot 40:73–82. doi:10.1016/j.cropro.2012.04.018

    Google Scholar 

  • Perumal R, Isakeit T, Menz M, Katile S, No EG, Magill CW (2006) Characterization and genetic distance analysis of isolates of Peronosclerospora sorghi using AFLP fingerprinting. Mycol Res 110(4):471–478. doi:10.1016/j.mycres.2005.12.007

    CAS  PubMed  Google Scholar 

  • Picardo ST (2007) Occurrence of diseases and insect pests in selected soyabean (Glycine Max (L) Merr) and sorghum (Sorghum bicolor (L.) Moench) rotations in Mississippi. Mississippi State University (Dissertation) Mississippi, United States, 107 pp

    Google Scholar 

  • Pratt RG (1978) Germination of oospores of Sclerospora sorghi in the presence of growing roots of host and non-host plants. Phytopathol 68:1606–1613. doi:10.1094/Phyto-68-1606

    Google Scholar 

  • Prom LK, Perumal R, Erattaimuthu SR, Little CR, No EG, Erpelding JE, Rooney WL, Odvody GN, Magill CW (2012) Genetic diversity and pathotype determination of Colletotrichum sublineolum isolates causing anthracnose in sorghum. Eur J Plant Pathol 133:671–685. doi:10.1007/s10658-012-9946-z

    Google Scholar 

  • Purkayastha S, Kaur B, Dilbaghi N, Chaudhury A (2006) Characterization of Macrophomina phaseolina, the charcoal rot pathogen of cluster bean, using conventional techniques and PCR-based molecular markers. Plant Pathol 55(1):106–116. doi:10.1111/j.1365-3059.2005.01317.x

    CAS  Google Scholar 

  • Rai KN, Thakur RP (1995) Ergot reaction of pearl millet hybrids affected by fertility restoration and genetic resistance of parental lines. Euphytica 83(3):225–231. doi:10.1007/BF01678134

    Google Scholar 

  • Rajkumar FB, Kuruvinashetti MS (2007) Genetic variability of sorghum charcoal rot pathogen Macrophomina phaseolina assessed by random DNA markers. Plant Pathol J 23(2):45–50

    Google Scholar 

  • Ramathani I (2010) Characterisation of Turcicum leaf blight epidemics and pathogen populations in the Exserohilum turcicum-sorghum pathosystem of Uganda. University of Makerere (Diss.) Uganda, pp 88–92

    Google Scholar 

  • Reed JE, Patridge E, Nordquist PT (1983) Fungal colonisation of stalks and roots of grain sorghum during growing season. Plant Dis 64:417–420. doi:10.1094/PD-67-417

    Google Scholar 

  • Reyes L, Frederikson RA, Walker HJ (1969) Anthracnose incidence on grain sorghum in the south Texas coastal bend area in 1968. In: Proceedings of the 6th Biennial Grain Sorghum Research and Utilization Conference, Sponsored by the Grain Sorghum Producers' Association (GSPA) and Sorghum Improvement Conference of North America Available from GSPA, Abemathy Texas, pp 8–9

    Google Scholar 

  • Reyes-Franco MC, Hernández-Delgado S, Beas-Fernández R, Medina Fernández R, Simpson J, Mayek-PĂ©rez N (2006) Pathogenic and Genetic variability within Macrophomina phaseolina from Mexico and other countries. J Phytopathol 154(7–8):447–453. doi:10.1111/j.1439-0434.2006.01127.x

    CAS  Google Scholar 

  • Richards R, Kucharek T (2006) Florida plant disease management guide. Institute of Food and Agricultural Sciences, University of Florida, Gainsville

    Google Scholar 

  • Rosenow DT, Frederiksen RA (1982) Breeding for disease resistance in sorghum. In: Sorghum in the Eighties: Proceedings of the International Symposium on Sorghum, Sponsored by INTSORMIL, ICAR, and ICRISAT, Patancheru, pp 447–455

    Google Scholar 

  • Rotem J, Cohen Y, Bashi E (1978) Host and environment influences on sporulation in vivo. Annu Rev Phytopathol 16:83–101. doi:10.1146/annurev.py.16.090178.000503

    Google Scholar 

  • Royle DJ, Butler DR (1986) Epidemiological significance of liquid water in crop canopies and its role in disease forecasting. In: Ayres PG, Boddy L (eds) Water, fungi and plants, vol 8. Cambridge University Press, Cambridge, pp 139–156

    Google Scholar 

  • Semagn K, Bjornstad A, Xu Y (2010) The genetic dissection of quantitative traits in crops. EJB 13(5). doi: 10.2225/vol13-issue5-fulltext-21

  • Sharma HC, Dhillon M, Pampapathy G, Reddy B (2007) Inheritance of resistance to spotted stem borer, Chilo partellus, in sorghum, Sorghum bicolor. Euphytica 156(1–2):117–128. doi:10.1007/s10681-007-9358-x

    Google Scholar 

  • Sharma HC, Sharma KK, Seetharama N, Ortiz R (2000) Prospects for using transgenic resistance to insects in crop improvement. EJB 3(2). doi:10.2225/vol3-issue2-fulltext-3

  • Sharma I, Kumari N, Sharma V (2014) Defense gene expression in Sorghum bicolor against Macrophomina phaseolina in leaves and roots of susceptible and resistant cultivars. J Plant Interact 9(1):315–323. doi:10.1080/17429145.2013.832425

  • Shaw CG (1978) Peronosclerospora species and other downy mildews of the Gramineae. Mycologia 70:594–604

    Google Scholar 

  • Shih CH, Siu SO, Nq R, Wong R, Chiu LC, Chu IK, Lo C (2007) Quantitative analysis of anticancer 3-deoxyanthocyanidins in infected sorghum seedling. J Agric Food Chem 55(2):254–259. doi:10.1021/jf062516t

    CAS  PubMed  Google Scholar 

  • Silaev AI (2005) Biologic and toxicological substantiation of the adaptive protection of sorghum from the smut disease in the Volga region. Ph.D. Thesis, St Petersburg, VIZR, 47 pp

    Google Scholar 

  • Snyder BA, Nicholson RL (1990) Synthesis of phytoalexins in sorghum as a site-specific response to fungal ingress. Science 248(4963):1637–1639. doi:10.1126/science.248.4963.1637

    CAS  PubMed  Google Scholar 

  • Spencer-Phillips PTN, Gisi U, Labeda A (2003) Advances in downy mildew research. Kluwer Academic Publishers, New York, pp 1–267

    Google Scholar 

  • Su G, Suh SO, Schneider RW, Russin JS (2001) Host specialization in the charcoal rot fungus, Macrophomina phaseolina. Phytopathol 91(2):120–126. doi:10.1094/PHYTO.2001.91.2.120

    CAS  Google Scholar 

  • Sukno SA, Garc VM, Shaw BD, Thon MR (2008) Root infection and systemic colonization of maize by Colletotrichum graminicola. App Env Microbio 74(3):823–832. doi:10.1128/AEM. 01165-07

    CAS  Google Scholar 

  • Tarr SA (1962) Diseases of sorghum, Sudan grass and broomcorn. Common Wealth Mycological Institute, Kew, 380 pp

    Google Scholar 

  • Tarumoto I, Isawa K, Watanabe K (1977) Inheritance of leaf blight resistance in sorghum-sudangrass and sorghum-sorghum hybrids. Japan J Breed 27(3):216–222

    Google Scholar 

  • Tenkuano A, Miller FR, Fredericksen RA, Nicholson RL (1998) Ontogenic characteristics and inheritance of resistance to leaf anthracnose in sorghum. Afr Crop Sci 6(3):249–258

    Google Scholar 

  • Thakur RP, Reddy BVS, Mathur K (2007) Screening techniques for sorghum diseases information: bulletin no 76. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, 92 pp

    Google Scholar 

  • Thakur RP, Mathur K (2000) Anthracnose. In: Frederiksen RA, Odvody GN (eds) Compendium of sorghum diseases. APS Press, St. Paul, pp 10–12

    Google Scholar 

  • Thakur RP, Rao VP, King SB (1989) Ergot susceptibility in relation to cytoplasmic male sterility in pearl millet. Plant Dis 73(8):676–678. doi:10.1094/PD-73-0676

    Google Scholar 

  • Thind TS (2005) Diseases of chickpea and their management. In: Thind (ed) Diseases of field crops and their management. Daya Publishing House, New Delhi, 82 pp

    Google Scholar 

  • Tilahun T, Ayana G, Abebe F, Wegary D (2001) Maize pathology research in Ethiopia. In: Mandefro N, Tanner D, Twumasi-Afriyie S (eds) Enhancing the contribution of maize to food security in Ethiopia. Proceedings of the second national workshop of Ethiopia. Addis Ababa, Ethiopia

    Google Scholar 

  • Torres-Montalvo H, Mendoza-Onofre L, Gonzalez-Hernandez V, William-Alanis H (1992) Reaction of tan and non-tan isogenic genotypes to head light. Int Sorghum Millets News Lett 33:36

    Google Scholar 

  • Wall GC, Meckenstock DH (1992) Sorghum diseases in Central America and the Caribbean basin. In: de Milliano WAJ, Frederiksen RA, Bengston GD (eds) Sorghum and millets diseases: a second world review. ICRISAT, Patancheru

    Google Scholar 

  • Welz HG, Geiger HH (2000) Genes for resistance to Northern corn leaf blight in diverse maize populations. Plant Breeding 119(1):1–14. doi:10.1046/j.1439-0523.2000.00462.x

    CAS  Google Scholar 

  • Wharton PS, Julian AM (1996) A cytological study of compatible and incompatible interactions between Sorghum bicolor and Colletotrichum sublineolum. New Phytol 134(1):25–34. http://dx.doi.org/10.1111/j.1469-8137.1996.tb01143.x

  • Williams RJ, Frederiksen RA, Girard JC (1978) Sorghum and pearl millet disease identification handbook. ICRISAT, Patancheru, 88 pp

    Google Scholar 

  • Windes JM, Pedersen WL (1991) An isolate of Exserohilum turcicum virulent on maize inbreeds with resistance gene HtN. Plant Dis 75:430. doi:10.1094/PD-75-0430E

    Google Scholar 

  • Yeh Y, Frederiksen RA (1980) Sorghum downy mildew: biology of systemic infection by conidia and of a resistant response in sorghum. Phytopathol 70:372–376. doi:10.1094/Phyto-70-372

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vinay Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sharma, I., Kumari, N., Sharma, V. (2015). Sorghum Fungal Diseases. In: Lichtfouse, E., Goyal, A. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-16988-0_7

Download citation

Publish with us

Policies and ethics