Skip to main content

Rice, Wheat and Maize Biofortification

  • Chapter

Part of the book series: Sustainable Agriculture Reviews ((SARV,volume 16))

Abstract

Cereals are the major energy source for humans throughout the world and hold a prominent position in a balanced diet to meet up carbohydrate demand of the body. Most of the cereals are deficient in micronutrient and vitamins and continuous dependency on cereal based diets resulted in human malnutrition. Biofortification is a novel concept defined as the enrichment of micronutrients through conventional plant breeding and modern biotechnology. In this post genomic era, an enormous amount of genetic information is available for staple food crops. This genetic information could be used to improve nutritional quality of the staple food crops to provide nutritional requirements. During last few decades, cereal biofortification research has been significantly contributed to reduce malnutrition around the world. Knowledge of precise phenotyping and genetics of the traits are prerequisite before starting of a genetic biofortification program. The inheritance of major micronutrients and vitamins in rice, wheat and maize were reported to be polygenic and in most of the cases the quantitative trait loci were mapped in the genome. A few commercial cereal cultivars are developed so far using genetic biofortification technique. The ongoing biofortification programs are more competitive as newer perspective of food matrix came into picture. In this article we reviewed an overview of current global cereal biofortification efforts, global malnutrition issues, and the promise of biotechnology techniques to improve cereals as a whole food solution to combat global malnutrition issues.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

cDNA:

Complementary Deoxyribonucleic Acid

CGIAR:

Consultative Group on International Agricultural Research

ILs:

Introgression Lines

QPM:

Quality Protein Maize

QTL:

Quantitative Trait Loci

RILs:

Recombinant Inbred Lines

SCN:

Standing Committee on Nutrition

UN:

United Nations

WHO:

World Health Organization

References

  • Akalu G, Taffesse S, Gunaratna NS, De Groote H (2010) The effectiveness of quality protein maize in improving the nutritional status of young children in the Ethiopian highlands. Food Nutr Bull 31:418–430

    PubMed  Google Scholar 

  • Anonymous (2008) The Copenhagen Consensus 2008—Results. The Copenhagen Consensus Cent., Frederiksberg, pp 1–6. Available at http://www.copenhagenconsensus.com/default.aspx?ID=953. Accessed 24 Apr 2015

  • Anuradha K, Agarwal S, Rao YV, Rao KV, Viraktamath BC, Sarla N (2012) Mapping QTLs and candidate genes for iron and zinc concentrations in unpolishedrice of Madhukar × Swarna RILs. Gene 508:233–240

    Article  CAS  PubMed  Google Scholar 

  • Ariza-Nieto M, Blair MW, Welch RM, Glahn RP (2007) Screening of iron bioavailability patterns in eight bean (Phaseolus vulgaris L.) genotypes using the Caco-2 cell in vitro model. J Agric Food Chem 55:7950–7956

    Article  CAS  PubMed  Google Scholar 

  • Bailey LB, Gregory JFR (2006) Folate. In: Bowman B, Russell R (eds) Present knowledge in nutrition, vol 1. International Life Sciences Institute, Washington, DC, pp 278–301

    Google Scholar 

  • Beebe S, Gonzalez AV, Renfigo J (2000) Research on trace minerals in common bean. Food Nutr Bull 21:387–390

    Google Scholar 

  • Berry RJ, Li Z, Erickson JD, Li S, Moore CA, Wang H, Mulinare J, Zhao P, Wong LYC, Gindler J, Hong S-X, Correa A (2000) Prevention of neural-tube defects with folic acid in China. N Engl J Med 341:1485–1490

    Article  Google Scholar 

  • Beyer P, Al-Babili S, Ye X, Lucca P, Schaub P, Welsch R, Potrykus I (2002) Golden rice: introducing the β-carotene biosynthesis pathway into rice endosperm by genetic engineering to defeat vitamin A deficiency. J Nutr 132:506S–510S

    PubMed  Google Scholar 

  • Blair MW, Astudillo C, Beebe S (2005) Analysis of nutritional quality traits in an andean recombinant inbred line population. Bean Improv Coop 48:52–53

    Google Scholar 

  • Blair MW, Knewtson SJB, Astudillo C, Li C, Fernandez AC, Grusak MA (2010a) Variation and inheritance of iron reductase activity in the roots of common bean (Phaseolus vulgaris L.) and association with seed iron accumulation QTL. BMC Plant Biol 10:215

    Article  PubMed Central  PubMed  Google Scholar 

  • Blair MW, Medina JI, Astudillo C, Rengifo J, Beebe SE, Machado G, Graham R (2010b) QTL for seed iron and zinc concentration and content in a Mesoamerican common bean (Phaseolus vulgaris L.) population. Theor Appl Genet 121:1059–1070

    Article  CAS  PubMed  Google Scholar 

  • Borg S, Brinch-Pedersen H, Tauris B, Holm PB (2009) Iron transport, deposition and bioavailability in the wheat and barley grain. Plant Soil 325:15–24

    Article  CAS  Google Scholar 

  • Bouis HE (2003) Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost? Proc Nutr Soc 62:403–411

    Article  PubMed  Google Scholar 

  • Bouis HE, Welch RM (2010) Biofortification—a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci 50:S-20

    Article  Google Scholar 

  • Bouis H, Islam Y (2012) Delivering nutrients widely through biofortification: building on orange sweet potato. Focus 19, Brief 11. http://www.ifpri.org/sites/default/files/publications/focus19_11.pdf

  • Boushey CJ, Shirley AAB, Omenn GS, Motulsky AG (1995) A quantitative assessment of plasma homocysteine as a risk factor for vascular disease: probable benefits of increasing folic acid intakes. JAMA 274:1049–1057

    Article  CAS  PubMed  Google Scholar 

  • Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56:317–333

    Article  CAS  PubMed  Google Scholar 

  • Cakmak I, Pfeiffer WH, McClafferty B (2010) Biofortification of Durum wheat with zinc and iron. Cereal Chem 87(1):10–20

    Article  CAS  Google Scholar 

  • Caulfield LE, Zavaleta N, Shankar A, Merialdi M (1998) Potential contribution of maternal zinc supplementation during pregnancy for maternal and child survival. Am J Clin Nutr 68:S499–S508

    Google Scholar 

  • Chandra RK (1990) Micronutrients and immune functions. Ann New York Acad Sci 587:9–16

    Google Scholar 

  • Christian P, West KP Jr, Khatry SK, Katz J, LeClerq SC, Kimbrough-Pradhan E, Dali SM, Shrestha SR (2000) Vitamin A or ß -carotene supplementation reduce symptoms of illness in pregnant and lactating Nepali women. J Nutr 130:2675–2682

    Google Scholar 

  • Chhuneja P, Dhaliwal HS, Bains NS, Singh K (2006) Aegilops kotschyi and Aegilops tauschii as sources for higher levels of grain iron and zinc. Plant Breed 125:529–531

    Article  CAS  Google Scholar 

  • Cichy KA, Caldas GV, Snapp SS, Blair MW (2009) QTL Analysis of seed iron, zinc, and phosphorus levels in an andean bean population. Crop Sci 49:1742–1750

    Article  CAS  Google Scholar 

  • Cook JD, Layrisse M, Martinez-Torres C, Walker R, Monsen E, Finch CA (1972) Food iron absorption measured by an extrinsic tag. J Clin Invest 51:805–815

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Curie C, Briat JF (2003) Iron transport and signaling in plants. Annu Rev Plant Biol 54:183–206

    Article  CAS  PubMed  Google Scholar 

  • Feil B, Fossati D (1995) Mineral composition of triticale grains as related to grain yield and grain protein. Crop Sci 35:1426–1431

    Article  Google Scholar 

  • Fenech M (2001) The role of folic acid and vitamine B12 in genomic stability of human cells. Mutat Res 475:56–67

    Google Scholar 

  • Garcia-Casal MN, Leets I, Layrisse M (2000) Ý-carotene and inhibitors of iron absorption modify iron uptake by caco-2 cells. J Nutr 130:5–9

    CAS  PubMed  Google Scholar 

  • Garcia-Oliveira AL, Tan L, Fu Y, Sun C (2009) Genetic identification of quantitative trait loci for contents of mineral nutrients in rice grain. J Integr Plant Biol 51(1):84–92

    Article  CAS  PubMed  Google Scholar 

  • Gelin JR, Forster S, Grafton KF, McClean P, Rojas-Cifuentes GA (2007) Analysis of seed-zinc and other nutrients in a recombinant inbred population of navy bean (Phaseolus vulgaris L.). Crop Sci 47:1361–1366

    Article  CAS  Google Scholar 

  • Gibson RS (2012) Zinc deficiency and human health: etiology, health consequences, and future solutions. Plant and Soil 361(1–2):291–299

    Article  CAS  Google Scholar 

  • Glahn RP, Wortley GM, South PK, Miller DD (2002) Inhibition of iron uptake by phytic acid, tannic acid, and ZnCl2: Studies using an in vitro digestion/Caco-2 cell model. J Agric Food Chem 50:390–395

    Article  CAS  PubMed  Google Scholar 

  • Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F (1999) Iron fortification of rice seed by the soybean ferritin gene. Nature Biotechnol 17:282–286

    Article  CAS  Google Scholar 

  • Graham RD, Welch RM, Bouis HE (2001) Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: principles, perspectives and knowledge gaps. Adv Agron 70:77–142

    Article  Google Scholar 

  • Gregorio GB, Senadhira D, Htut T, Graham RD (2000) Breeding for trace mineral density in rice. Food Nutr Bull 21:382–386

    Google Scholar 

  • Gunaratna NS, De Groote H, Nestel P, Pixley KV, McCabe GP (2010) A meta-analysis of community-based studies on quality protein maize. Food Policy 35:201–210

    Article  Google Scholar 

  • Harjes CE, Torbert RR, Ling B, Thomas PB, Catherine BK, Stephen GS, Ann ES et al (2008) Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319:330–333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harrison PM, Arosio P (1996) The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta 1275:161–203

    Article  PubMed  Google Scholar 

  • HarvestPlus Brief Breeding Crops for Better Nutrition (2006). Washington, DC

    Google Scholar 

  • Hoekenga OA, Lung’aho MG, Tako E, Kochian LV, Glahn RP (2011) Iron biofortification of maize grain. Plant Genet Res 9:327–329

    Article  CAS  Google Scholar 

  • Hugo De Groote, Gunaratna N, Ergano K, Friesen D (2010) Extension and adoption of biofortified crops: quality protein maize in East Africa. Presented at the Joint 3rd African Association of Agricultural Economists (AAAE) and 48th Agricultural Economists Association of South Africa (AEASA) Conference, Cape Town, 19–23 Sept 2010

    Google Scholar 

  • Hunt JR (2003) Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. Am J Clin Nutr 78:633–639

    Google Scholar 

  • Johnson CR, Thavarajah D, Combs GF, Thavarajah P (2013) Lentil (Lens culinaris L.): a prebiotic-rich whole food legume. Food Res Int 51:107–113

    Article  CAS  Google Scholar 

  • Jones G, Steketee RW, Black RE, Bhutta ZA, Morris SS (2003) How many child deaths can we prevent this year? Lancet 362:65–71

    Article  PubMed  Google Scholar 

  • Krumdieck C (1990) Folic acid. In: Brown ME (ed) Present knowledge in nutrition. ILSI, Washington, DC, pp 179–188

    Google Scholar 

  • Lescure AM, Proudhon D, Pesey H, Ragland M, Theil EC, Briat JF (1991) Ferritin gene transcription is regulated by iron in soybean cell cultures. Proc Natl Acad Sci U S A 88:8222–8226

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lönnerdal B (2009) Soybean ferritin: implications for iron status of vegetarians. Am J Clin Nutr 89:1680S–1685S

    Article  PubMed  Google Scholar 

  • Lu K, Li L, Zheng X, Zhang Z, Mou T, Hu Z (2008) Quantitative trait loci controlling Cu, Ca, Zn, Mn and Fe content in rice grains. J Genet 87:305–310

    Article  PubMed  Google Scholar 

  • Lu L, Tian S, Liao H, Zhang J, Yang X, Labavitch JM, Chen W (2013) Analysis of metal element distributions in rice (Oryza sativa L.) seeds and relocation during germination based on X-ray fluorescence imaging of zn, fe, K, ca, and mn. PLoS One 8(2)

    Google Scholar 

  • Lucca P, Hurrell R, Potrykus I (2001) Genetic engineering approaches to improve the bioavailability and the level of iron in rice grains. Theor Appl Genet 102:392–397

    Article  CAS  Google Scholar 

  • Lung’aho MG, Mwaniki AM, Szalma SJ, Hart JJ, Rutzke MA et al (2011) Genetic and physiological analysis of iron biofortification in maize kernels. PLoS One 6(6):e20429. doi:10.1371/journal.pone.0020429

    Article  PubMed Central  PubMed  Google Scholar 

  • Maccaferri S, Klinder A, Cacciatore S, Chitarrari R, Honda H, Luchinat C, Bertini I, Carnevali P, Gibson GR, Brigidi P, Costabile A (2012) In vitro fermentation of potential prebiotic flours fromnatural sources: impact on the human colon microbiota and metabolome. Mol Nutr Food Res 56:1342–1352

    Article  CAS  PubMed  Google Scholar 

  • Meenakshi JV, Nancy J, Manyong V, De Groote H, Javelosa J, Yanggen D, Naher F, Garcia J, Gonzales C, Meng E (2007) How cost-effective is biofortification in combating micronutrient malnutrition? An ex ante assessment. HarvestPlus Working Paper #2. Washington, DC: International Food Policy Research Institute

    Google Scholar 

  • Nestel P, Bouis HE, Meenakshi JV, Pfeiffer W (2006) Biofortification of staple food crops. J Nutr 136:1064–1067

    CAS  PubMed  Google Scholar 

  • Norton GJ, Duan G-L, Lei M, Zhu Y-G, Meharg AA, Price AH (2012) Identification of quantitative trait loci for rice grain element composition on an arsenic impacted soil: Influence of flowering time on genetic loci. Ann Appl Biol 161:46–56

    Article  CAS  Google Scholar 

  • Oikeh SO, Menkir A, Maziya-Dixon B, Welch R, Glahn RP (2003) Genotypic differences in concentration and bioavailability of kernel-iron in tropical maize varieties grown under field conditions. J Plant Nutr 26:2307–2319

    Article  CAS  Google Scholar 

  • Osendarp SJM, West CE, Black RE (2003) The need for maternal zinc supplementation in developing countries: an unresolved issue. J Nutr 133:817S–827S

    CAS  PubMed  Google Scholar 

  • Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol 23:482–487

    Article  CAS  PubMed  Google Scholar 

  • Palmgren MG (2001) Plant plasma membrane H + -ATPases: powerhouses for nutrient uptake. Annu Rev Plant Physiol Plant Mol Biol 52:817–845

    Article  CAS  PubMed  Google Scholar 

  • Palmgren et al (2008) Zinc biofortification of cereals: problems and solutions. Trends Plant Sci 13(9):464–473

    Article  CAS  PubMed  Google Scholar 

  • Pancharuniti N, Lewis CA, Sauberlich HE, Perkins LL, Go RC, Alvarez JO, Macaluso M, Acton RT, Copeland RB, Cousins AL (1994) Plasma homocyst (e) ine, folate, and vitamin B-12 concentrations and risk for early-onset coronary artery disease. Am J Clin Nutr 59:940–948

    CAS  PubMed  Google Scholar 

  • Plaami S (1997) Myoinositol phosphates: analysis, content in foods and effects in nutrition. Food Sci Technol 30:633–647

    CAS  Google Scholar 

  • Qin H, Liu YCZ, Wang G, Wang J, Guo Y, Wang H (2012) Identification of QTL for zinc and iron concentration in maize kernel and cob. Euphytica 187:345–358

    Article  CAS  Google Scholar 

  • Qu LQ, Yoshihara T, Ooyama A, Goto F, Takaiwa F (2005) Iron accumulation does not parallel the high expression level of ferritin in transgenic rice seeds. Planta 222:225–233

    Article  CAS  Google Scholar 

  • Romheld V, Marschner H (1986) Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. Plant Physiol 80:175–180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sankaran R, Huguet T, Grusak M (2009) Identification of QTL affecting seed mineral concentrations and content in the model legume Medicago truncatula. Theor Appl Genet 119:241–253

    Article  CAS  PubMed  Google Scholar 

  • SCN (2004) 5th report on the world nutrition situation: nutrition for improved development outcomes − March 2004. http://www.unscn.org/layout/modules/resources/files/rwns5.pdf. Accessed 24 Apr 2015

  • Siegenberg D, Baynes RD, Bothwell TH, Macfarlane BJ, Lamparelli RD, Car NG, MacPhail P, Schmidt U, Tal A, Mayet F (1991) Ascorbic acid prevents the dose-dependent inhibitory effects of polyphenols and phytates on nonheme-iron absorption. Am J Clin Nutr 53:537–541

    CAS  PubMed  Google Scholar 

  • Šimić D, Drinić SM, Zdunić Z, Jambrović A, Ledenčan T, Brkić J, Brkić A, Brkić I (2012) Quantitative trait loci for biofortification traits in maize grain. J Hered 103:47–54

    Article  PubMed  Google Scholar 

  • Sompong U, Somta P, Raboy V, Srinives P (2012) Mapping of quantitative trait loci for phytic acid and phosphorus contents in seed and seedling of mungbean (Vigna radiata (L.) Wilczek). Breed Sci 62:87–92

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Strozycki PM, Szymanski M, Szczurek A, Barciszewski J, Figlerowicz M (2010) A new family of ferritin genes from Lupinus luteus—comparative analysis of plant ferritins, their gene structure, and evolution. Mol Biol Evol 27:91–101

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M et al (2006) Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. Plant J 48:85–97

    Article  CAS  PubMed  Google Scholar 

  • Suzuki M et al (2008) Deoxymugineic acid increases Zn translocation in Zn-deficient rice plants. Plant Mol Biol 66:609–617

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tagliavini M, Rambola AD (2001) Iron deficiency and chlorosis in Orchard and Vineyard Ecosystems. Eur J Agron 15:71–92

    Google Scholar 

  • Tagliavini M, Abadia J, Rombola A, Abadia A, Tsipouridis C, Marangoni B (2000) Agronomic means for the control of iron deficiency chlorosis in deciduous fruit trees. J Plant Nutr 23:11–12

    Google Scholar 

  • Takahashi M et al (1999) Cloning two genes for nicotianamine aminotransferase, a critical enzyme in iron acquisition (strategy II) in graminaceous plants. Plant Physiol 121:947–956

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Talukdar ZI, Anderson F, Miklas PN, Blair MW, Osorno J, Dilawari M, Hossain KG (2010) Genetic diversity and selection of genotypes to enhance Zn and Fe content in common bean. Can J Plant Sci 90:49–60

    Article  Google Scholar 

  • Taylor J, Taylor JRN, Kini F (2012) Cereal biofortification: strategies, challenges, and benefits. Cereal Foods World 57(4):165–167

    Article  CAS  Google Scholar 

  • Thavarajah D, Thavarajah P (2012) Lentils (Lens culinaris L.): a superior whole food solution to micronutrient malnutrition. In: Adan B, Humberto G (eds) Micronutrients sources, properties, and health effects. Nova Science Publishers Inc, New York, pp 179–191

    Google Scholar 

  • Thavarajah D, Thavarajah P, Gupta DS (2014) Pulses biofortification in genomic era: multidisciplinary opportunities and challenges. In: Gupta S, Nadarajan N, Gupta DS (eds) Legumes in the Omic Era. Springer Science+Business Media, New York, pp. 207–220

    Google Scholar 

  • Tiwari VK, Rawat N, Chhuneja P, Neelam K, Aggarwal R, Randhawa GS, Dhaliwal HS, Keller B, Singh K (2009) Mapping of quantitative trait loci for grain iron and zinc concentration in diploid a genome wheat. J Hered 100(6):771–776

    Google Scholar 

  • Turnbull A, Cleton F, Finch CA (1962) Iron absorption IV. The absorption of hemoglobin iron. J Clin Invest 41:1897–1907

    Google Scholar 

  • UN (2011) Expert Paper, No. 2011/2- prevention and treatment of chronic diseases in developing countries. http://www.un.org/en/development/desa/population/publications/pdf/expert/2011-2-gaziano.pdf. Accessed 24 Apr 2015

  • Vasconcelos M, Datta K, Oliva N, Khalekuzzaman M, Torrizo L, Krishnan S, Oliveira M, Goto F, Datta SK (2003) Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci 164:371–378

    Article  CAS  Google Scholar 

  • Velu G, Singh RP, Huerta-Espino J, Peña-Bautista RJ, Arun B, Mahendru-Singh A, Yaqub Mujahid M, Sohu VS, Mavi GS, Crossa J, Alvarado G, Joshi AK, Pfeiffer WH (2012) Performance of biofortified spring wheat genotypes in target environments for grain zinc and iron concentrations. Field Crops Res 137:261–267

    Article  Google Scholar 

  • Walker DR, Scaboo AM, Pantalone VR, Wilcox JR, Boerma HR (2006) Genetic mapping of loci associated with seed phytic acid content in CX1834-1-2 Soybean. Crop Sci 46:390–397

    Article  CAS  Google Scholar 

  • Waters BM, Grusak MA (2008) Quantitative trait locus mapping for seed mineral concentrations in two Arabidopsis thaliana recombinant inbred populations. New Phytol 179:1033–1047

    Article  CAS  PubMed  Google Scholar 

  • Welch RM (2002) Breeding strategies for biofortified staple plant foods to reduce micronutrient malnutrition globally. J Nutr 132(3):495–499

    Google Scholar 

  • Welch RM, Graham RD (1999) A new paradigm for world agriculture: meeting human needs: productive, sustainable and nutritious. Field Crop Res 60:1–10

    Article  Google Scholar 

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55(396):353–364

    Article  CAS  PubMed  Google Scholar 

  • West KP Jr, Katz J, Khatry SK, LeClerq SC, Pradhan EK, Shrestha SR, Connor PB, Dali SM, Christian P, Pokhrel RP, Sommer A (1999) NNIPS-2 Study Group. Double blind, cluster randomised trial of low-dose supplementation with vitamin A or ß-carotene on mortality related to pregnancy in Nepal. BMJ 318:570–575

    Google Scholar 

  • WHO (2005) The world health report- make every mother and child count. World Health Organization, Geneva. http://www.who.org/whr. Accessed 24 Apr 2015

  • WHO (2007) The world health report- A safer future: global public health security in the 21st century. World Health Organization, Geneva. http://www.who.org/whr. Accessed 24 Apr 2015

  • WHO (2013) The world health report – research for universal health coverage. World Health Organization, Geneva. http://www.who.org/whr. Accessed 24 Apr 2015

  • Xu Y, Ana D, Liub D, Zhang A, Hongxing X, Li B (2012) Molecular mapping of QTLs for grain zinc, iron and protein concentration of wheat across two environments. Field Crop Res 138:57–62

    Article  Google Scholar 

  • Yeung CK, Glahn RP, Welch RM, Miller DD (2005) Prebiotics and iron bioavailability-is there a connection? J Food Sci 70:88–92

    Article  Google Scholar 

Download references

Acknowledgement

An ICAR International Fellowship to Debjyoti Sen Gupta from Indian Council of Agricultural Research (ICAR), New Delhi, India is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debjyoti Sen Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Gupta, D.S., Thavarajah, D., Ekanayake, L.J., Johnson, C., Amarakoon, D., Kumar, S. (2015). Rice, Wheat and Maize Biofortification. In: Lichtfouse, E., Goyal, A. (eds) Sustainable Agriculture Reviews. Sustainable Agriculture Reviews, vol 16. Springer, Cham. https://doi.org/10.1007/978-3-319-16988-0_6

Download citation

Publish with us

Policies and ethics