Skip to main content

Piezonuclear Fission Reactions Simulated by the Lattice Model of the Atomic Nucleus

  • Chapter
Acoustic, Electromagnetic, Neutron Emissions from Fracture and Earthquakes

Abstract

Recent experiments conducted on natural rocks subjected to different mechanical loading conditions have shown energy emissions in the form of neutrons and anomalous chemical changes. In the present study, a numerical model is used to simulate the nuclear products according to the fission interpretation. Specifically, the reactions were simulated by means of the Lattice Model of the atomic nucleous, assuming nucleons ordered in an antiferromagnetic face-centered-cubic (fcc) array. The simulations indicate that small and middle-sized nuclei can be fractured along weakly-bound planes of the lattice structure. It is argued that the simulations provide theoretical support to the experimentally-observed reactions and, moreover, that the probabilities calculated for various low-energy fissions can be used to explain the stepwise time changes in the element abundances of the Earth’s crust, which has evolved from basaltic to sialic composition over geological time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carpinteri A, Cardone F, Lacidogna G (2009) Piezonuclear neutrons from brittle fracture: early results of mechanical compression tests. Strain 45:332−339. Atti dell’Accademia delle Scienze di Torino 33:27−42

    Google Scholar 

  2. Cardone F, Carpinteri A, Lacidogna G (2009) Piezonuclear neutrons from fracturing of inert solids. Phys Lett A 373:4158–4163

    Article  Google Scholar 

  3. Carpinteri A, Cardone F, Lacidogna G (2010) Energy emissions from failure phenomena: mechanical, electromagnetic, nuclear. Exp Mech 50:1235–1243

    Article  Google Scholar 

  4. Carpinteri A, Borla O, Lacidogna G, Manuello A (2010) Neutron emissions in brittle rocks during compression tests: monotonic vs. cyclic loading. Phy Mesomech 13:268–274

    Article  Google Scholar 

  5. Carpinteri A, Lacidogna G, Manuello A, Borla O (2011) Energy emissions from brittle fracture: neutron measurements and geological evidences of piezonuclear reactions. Strenght Fract Complex 7:13–31

    Google Scholar 

  6. Carpinteri A, Lacidogna G, Manuello A, Borla O (2012) Piezonuclear fission reactions: evidences from microchemical analysis, neutron emission, and geological transformation. Rock Mech Rock Eng 45:445–459

    Article  Google Scholar 

  7. Carpinteri A, Lacidogna G, Borla O, Manuello A, Niccolini G (2012) Electromagnetic and neutron emissions from brittle rocks failure: experimental evidence and geological implications. Sadhana 37:59–78

    Article  Google Scholar 

  8. Carpinteri A, Lacidogna G, Manuello A, Borla O (2013) Piezonuclear fission reactions from earthquakes and brittle rocks failure: evidence of neutron emission and nonradioactive product elements. Exp Mech 53(3):345–365

    Article  Google Scholar 

  9. Carpinteri A, Chiodoni A, Manuello A, Sandrone R (2011) Compositional and microchemical evidence of piezonuclear fission reactions in rock specimens subjected to compression tests. Strain 47(2):267–281

    Article  Google Scholar 

  10. Carpinteri A, Manuello A (2011) Geomechanical and geochemical evidence of piezonuclear fission reactions in the Earth’s crust. Strain 47:282–292

    Article  Google Scholar 

  11. Carpinteri A, Manuello A (2012) An indirect evidence of piezonuclear fission reactions: geomechanical and geochemical evolution in the Earth’s crust. Phys Mesomech 15:14–23

    Article  Google Scholar 

  12. Manuello A, Sandrone R, Guastella S, Borla O, Lacidogna G, Carpinteri A (2016) Neutron emissions and compositional changes at the compression failure of iron-rich natural rocks. In: Carpinteri A, Lacidogna G, Manuello A (eds) Acoustic, electromagnetic, neutron emissions from fracture and earthquakes. Springer, New York

    Google Scholar 

  13. Widom A, Swain J, Srivastava YN (2015) Photo-disintegratin of the iron nucleus in fractured magnetite rocks with magetostriction. Meccanica 50(5):1205–1216

    Article  MathSciNet  Google Scholar 

  14. Widom A, Swain J, Srivastava YN (2013) Neutron production from the fracture of piezoelectric rocks. J Phys G 40:015006

    Article  Google Scholar 

  15. Bridgman PW (1927) The breakdown of atoms at high pressures. Phys Rev 29:188–191

    Article  Google Scholar 

  16. Storms E (2007) Science of low energy nuclear reaction: a comprehensive compilation of evidence and explanations about cold fusion. World Scientific Publishing Co, Singapore

    Book  Google Scholar 

  17. Cook ND (2010) Models of the atomic nucleus, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  18. Cook ND, Dallacasa V (1987) Face-centered-cubic solid-phase theory of the nucleus. Phys Rev C 35:1883–1890

    Article  Google Scholar 

  19. Cook ND, Dallacasa V (2012) LENR and nuclear structure theory. In: Proceedings of ICCF-17, Daejong, 12–17 Aug

    Google Scholar 

  20. Mizuno T (1998) Nuclear transmutation: the reality of cold fusion. Tuttle, Concord

    Google Scholar 

  21. Lilley J (2001) Nuclear physics: principles and applications. Wiley, Chichester

    Google Scholar 

  22. Krane KS (1987) Introductory nuclear physics. Wiley, Chichester

    Google Scholar 

  23. Cook ND (1976) An FCC lattice model for nuclei. Atomkernenergie 28:195–199

    Google Scholar 

  24. Cook ND (1981) Quantization of the FCC nuclear theory. Atomkernenergie 40:51–55

    Google Scholar 

  25. Dallacasa V, Cook ND (1987) The FCC nuclear model (II). Il Nuovo Cimento 97:157–183

    Article  Google Scholar 

  26. Cook ND (1989) Computing nuclear properties in the FCC model. Comput Phys 3:73–77

    Article  Google Scholar 

  27. Cook ND (1994) Nuclear binding energies in lattice models. J Phys G 20:1907–1917

    Article  Google Scholar 

  28. Cook ND (1999) Is the lattice gas model a unified model of nuclear structure? J Phys 25:1213–1221

    Article  Google Scholar 

  29. Cook ND (2008) Toward an explanation of transmutation products on palladium cathodes. In: Proceedings of ICCF-14, Rome

    Google Scholar 

  30. Cook ND (2010) Simulation of palladium fission products using the FCC lattice model. In: Proceedings of ICCF-16, Chennai

    Google Scholar 

  31. Wigner E (1937) On the consequences of the symmetry of the nuclear Hamiltonian on the spectroscopy of nuclei. Phys Rev 51:106–119

    Article  Google Scholar 

  32. Mizuno T (2000) Experimental confirmation of the nuclear reaction at low energy caused by electrolysis in the electrolyte. In: Proceedings of the symposium on Advanced Research in Energy Technologh, Hokkaido University, Hokkaido. March 15–17, pp 95–106

    Google Scholar 

  33. Cardone F, Manuello A, Mignani R, Petrucci A, Santoro E, Sepielli M, Carpinteri A (2016) Ultrasonic piezonuclear reactions in steel and sintered ferrite bars. J Adv Phy 5:1–7

    Google Scholar 

  34. Liu L (2004) The inception of the oceans and CO2-athmosphere in the early history of the Earth. Earth Planet Sci Lett 227:179–184

    Article  Google Scholar 

  35. Preparata GA (1991) New look at solid-state fractures, particle emission and “Cold” nuclear fusion. Il Nuovo Cimento 104(8):1259–1263

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman D. Cook .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cook, N.D., Manuello, A., Veneziano, D., Carpinteri, A. (2015). Piezonuclear Fission Reactions Simulated by the Lattice Model of the Atomic Nucleus. In: Carpinteri, A., Lacidogna, G., Manuello, A. (eds) Acoustic, Electromagnetic, Neutron Emissions from Fracture and Earthquakes. Springer, Cham. https://doi.org/10.1007/978-3-319-16955-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16955-2_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16954-5

  • Online ISBN: 978-3-319-16955-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics