Skip to main content

Fractal Characteristics of the Pore Network in Diatomites Using Mercury Porosimetry and Image Analysis

  • Conference paper
  • First Online:
Book cover 2nd International Multidisciplinary Microscopy and Microanalysis Congress

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 164))

  • 1198 Accesses

Abstract

The complex pore space considerably affects the unique properties of diatomite and its significant potential for many industrial applications. The pore network in the diatomite from the Lower Miocene strata of the Skole nappe (the Jawornik deposit, SE Poland) has been investigated using a fractal approach. The fractal dimension of the pore-space volume was calculated using the Menger sponge as a model of a porous body and the mercury porosimetry data in a pore-throat diameter range between 10,000 and 10 nm. Based on the digital analyses of the two-dimensional images from thin sections taken under a scanning electron microscope at the backscattered electron mode at different magnifications, the authors tried to quantify the pore spaces of the diatomites using the box counting method. The results derived from the analyses of the pore-throat diameter distribution using mercury porosimetry have revealed that the pore space of the diatomite has the bifractal structure in two separated ranges of the pore-throat diameters considerably smaller than the pore-throat sizes corresponding to threshold pressures. Assuming that the fractal dimensions identified for the ranges of the smaller pore-throat diameters characterize the overall pore-throat network in the Jawornik diatomite, we can set apart the distribution of the pore-throat volume (necks) and the pore volume from the distribution of the pore-space volume (pores and necks together).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A.H. Thompson, A.J. Katz, C.E. Krohn, The microgeometry and transport properties of sedimentary rock. Adv. Phys. 36(5), 625–694 (1987)

    Article  ADS  Google Scholar 

  2. C.M. Ross, A.R. Kovscek, Pore microstructure and fluid distribution in a diatomaceous reservoir. SPE 75190, 1–9 (2002)

    Google Scholar 

  3. L. Jia, C.M. Ross, A.R. Kovscek, A pore-network-modeling approach to predict petrophysical properties of diatomaceous reservoir rock. SPE 93806, 597–608 (2007)

    Google Scholar 

  4. A.J. Katz, A.H. Thompson, Fractal sandstone pores: implications for conductivity and pore formation. Phys. Rev. Lett. 54(12), 1325–1328 (1985)

    Article  ADS  Google Scholar 

  5. C.E. Krohn, A.H. Thompson, Fractal sandstone pores: automated measurements using scanning-electron-microscope images. Phys. Rev. B 33(9), 6366–6374 (1986)

    Article  ADS  Google Scholar 

  6. J.P. Hansen, A.T. Skjeltorp, Fractal pore space and rock permeability implications. Phys. Rev. B 38(4), 2635–2638 (1988)

    Article  ADS  Google Scholar 

  7. C.E. Krohn, Sandstone fractal and Euclidean pore volume distributions. J. Geophys. Res. 93(B4), 3286–3296 (1988)

    Article  ADS  Google Scholar 

  8. C.E. Krohn, Fractal measurements of sandstones, shales and carbonates. J. Geophys. Res. 93(B4), 3297–3305 (1988)

    Article  ADS  Google Scholar 

  9. B.B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1983)

    Google Scholar 

  10. P. Pfeifer, D. Avnir, Chemistry in noninteger dimensions between two and three. I. Fractal theory of heterogeneous surfaces. J. Chem. Phys. 79(7), 3558–3565 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  11. J. Kotlarczyk, Leszczawka Diatomite Horizon in diatomite quarry near Jaworowice (former Jawornik Ruski), in Geotraverse Kraków-Baranów-Rzeszów-Przemyśl-Ustrzyki Dolne-Komańcza-Dukla, Guide to Excursion 4, Carpatho-Balkan Geological Association, XIII Congress, Cracow, Poland, ed. by J. Kotlarczyk (Geological Institute, Warszawa, 1985), pp. 145–147

    Google Scholar 

  12. S. Boggs Jr., Petrology of Sedimentary Rocks (Cambridge University Press, Cambridge, 2009)

    Google Scholar 

  13. W. Yang, P.J. Lopez, G. Rosengarten, Diatoms: self assembled silica nanostructures, and templates for bio/chemical sensors and biomimetic membranes. Analyst 136, 42–53 (2011)

    Article  ADS  Google Scholar 

  14. W. Rasband, ImageJ, 1.42 g ed. National Institutes of Health, USA Java 1.6.0_20 (64-bit). http://rsbweb.nih.gov/ij

  15. A. Karperien, FracLac for ImageJ http://rsb.info.nih.gov/ij/plugins/fraclac/FLHelp/ (1999–2013)

  16. C.L. Vavra, J.G. Kaldi, R.M. Sneider, Geological applications of capillary pressure: a review. AAPG Bull. 76(6), 840–850 (1992)

    Google Scholar 

  17. IUPAC, Manual of symbols and terminology for physicochemical quantities and units—appendix II. Definitions, terminology and symbols in colloid and surface chemistry. Part II: heterogeneous catalysis. Pure Appl. Chem. 46(1), 71–90 (1976)

    Google Scholar 

  18. D.L. Turcotte, J. Huang, Fractal distribution in geology, scale invariance, and deterministic chaos, in Fractals in the Earth Sciences, ed. by C.C. Barton, P.R. La Pointe (Plenum Press, New York, 1995), pp. 1–40

    Google Scholar 

  19. D.L. Turcotte, Fractals and Chaos in Geology and Geophysics (Cambridge University Press, Cambridge, 1992)

    Google Scholar 

  20. F. Bartoli, N.R.A. Bird, V. Gomendy, H. Vivier, S. Niquet, The relation between silty soil structures and their mercury porosimetry curve counterparts: fractals and percolation. Eur. J. Soil Sci. 50, 9–22 (1999)

    Article  Google Scholar 

  21. R.F. Angulo, V. Alvarado, H. Gonzalez, Fractal dimensions from mercury intrusion capillary tests. SPE 23695, 255–263 (1992)

    Google Scholar 

  22. J.D. Bonny, H. Leuenberger, Determination of fractal dimensions of matrix-type solid dosage forms and their relation with drug dissolution kinetics. Eur. J. Pharm. Biopharm. 39(1), 31–37 (1993)

    Google Scholar 

  23. R. Ehrlich, S.J. Crabtree, K.O. Horkowitz, J.P. Horkowitz, Petrography and reservoir physics I: objective classification of reservoir porosity. AAPG Bull. 75(10), 1547–1562 (1991)

    Google Scholar 

  24. B.H. Kaye, Image analysis techniques for characterizing fractal structures, in The Fractal Approach to Heterogeneous Chemistry, ed. by D. Avnir (Wiley, Chichester, 1989), pp. 55–66

    Google Scholar 

  25. P. Such, G. Lesniak, Study of pore space parameters of rocks. Prace Instytutu Gornictwa Naftowego i Gazownictwa 119, 3–63 (2003) (summary in English)

    Google Scholar 

  26. G. Stanczak, Fractal analysis of the pore space in sandstones as derived from mercury porosimetry and image analysis, in International Multidisciplinary Microscopy Congress, ed. by E.K. Polychroniadis, A.Y. Oral, M. Ozer (Springer Proceedings in Physics 154, 2014) pp. 51–60

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by the AGH-UST statutory grant No. 11.11.140.320.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grażyna Stańczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Stańczak, G., Rembiś, M., Figarska-Warchoł, B., Toboła, T. (2015). Fractal Characteristics of the Pore Network in Diatomites Using Mercury Porosimetry and Image Analysis. In: Polychroniadis, E., Oral, A., Ozer, M. (eds) 2nd International Multidisciplinary Microscopy and Microanalysis Congress. Springer Proceedings in Physics, vol 164. Springer, Cham. https://doi.org/10.1007/978-3-319-16919-4_11

Download citation

Publish with us

Policies and ethics