Skip to main content

Distributed Generation Plants

  • Chapter
  • First Online:
Control and Optimization of Distributed Generation Systems

Part of the book series: Power Systems ((POWSYS))

  • 2300 Accesses

Abstract

The purpose of this chapter is to draw a complete system portrait of the main ingredients of distributed generation plants. The emphasis is on aspects of electricity/heat generation and utilization. This covers combined heat and power plants and renewable energy generation units. Discussion is presented on the basic concepts of microgeneration systems, their needs, technical advantages, and challenges. The basic principles of operation of several distributed generation technologies normally used in microgrid and active distribution networks are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abo-Khalil AG, Lee D-C (2008) MPPT control of wind generation systems based on estimated wind speed using SVR. IEEE Trans Ind Electron 55(3):1489–1490

    Article  Google Scholar 

  2. Alepuz S, Calle A, Busquets-Monge S, Kouro S, Wu B (2013) Use of stored energy in PMSG rotor inertia for low-voltage ride-through in back-to-back NPC converter-based wind power systems. IEEE Trans Ind Electron 60(5):1787–1796

    Article  Google Scholar 

  3. Aliprantis DC, Papathanassiou SA, Papadopoulos MP, Kladas AG (2000) Modeling and control of a variable-speed wind turbine equipped with permanent synchronous generator. In: Proceedings of the ICEM 2000, Espoo, Finland, August 28–30, pp 558–562

    Google Scholar 

  4. Ashden: Sustainable solutions, http://www.ashden.org/

  5. Atalik T, Deniz M, Koc E, Gercek C, Gultekin B, Ermis M, Cadirc I (2012) Multi-DSP and -FPGA based fully-digital control system for cascaded multilevel converters used in FACTS. IEEE Trans Ind Inf 8(3):511–527

    Article  Google Scholar 

  6. Bernal-Perez S, A-Villalba S, Blasco-Gimenez R, Rodrguez-DDerle J (2013) Efficiency and fault ride-through performance of a diode-rectifier- and VSC-inverter-based HVDC link for offshore wind farms. IEEE Trans Ind Electron 60(6):2401–2409

    Article  Google Scholar 

  7. Bernal-Perez S, A-Villalba S, Blasco-Gimenez R, Rodrguez-DDerle J (2013) Efficiency and fault ride-through performance of a diode-rectifier- and VSC-inverter-based HVDC link for offshore wind farms. IEEE Trans Ind Electron 60(6):2401–2409

    Google Scholar 

  8. Boldea I (2006) Variable speed generator. Taylor & Francis Group, Boca Raton

    Google Scholar 

  9. Burton T, Sharpe D, Jenkins N, Bossanyi E (2001) Wind energy handbook. Wiley, West Sussex

    Google Scholar 

  10. Cardenas R, Pena R, Wheeler P, Clare J, Asher G (2009) Control of the reactive power supplied by a WECS based on an induction generator fed by a matrix converter. IEEE Trans Ind Electron 56(2):429–438

    Article  Google Scholar 

  11. Cardenas R, Pena R, Tobar G, Clare J, Wheeler P, Asher G (2009) Stability analysis of a wind energy conversion system based on a doubly fed induction generator fed by a matrix converter. IEEE Trans Ind Electron 56(10):4194–4206

    Article  Google Scholar 

  12. Carranza O, Figures E, Carcera G, Ortega R, Velasco D (2011) Low power wind generation system based on variable speed permanent magnet synchronous generators. In: Proceedings of the international symposium on industrial electronics, ISIE 11, Gdansk, Poland, June 27–30, pp 1063–1068

    Google Scholar 

  13. Chen WL, Li ZC, Lin YS, Huang BX (2011) Control and performance identification for small vertical axis wind turbines. In: Proceedings of the IET conference renewable power generation, RPG 11, Edinburgh, UK, September 6–8, p 113

    Google Scholar 

  14. Esp JM, Castell J (2013) Wind turbine generation system with optimized DC-link design and control. IEEE Trans Ind Electron 60(3):919–929

    Article  Google Scholar 

  15. Integration of distributed energy resources: the CERTS microgrid concept. Consultant report no. P500-03-089, October 2003

    Google Scholar 

  16. International Renewable Energy Agency: Working Papers, http://www.irena.org/

  17. Iwanski G, Koczara W (2008) DFIG-based power generation system with UPS function for variable-speed applications. IEEE Trans Ind Electron 55(8):3047–3054

    Article  Google Scholar 

  18. Kanellos FD, Papathanassiou SA, Hatziargyriou ND (2000) Dynamic analysis of a variable speed wind turbine equipped with a voltage source AC/DC/AC converter interface and a reactive current loop. In: Proceedings of the 10th mediterranean electro-technical conference (MEleCon00), vol 3, pp 986–989

    Google Scholar 

  19. Kazmi SMR, Goto H, Guo H-J, Ichinokura O (2011) A novel algorithm for fast and efficient speed-sensorless maximum power point tracking in wind energy conversion systems. IEEE Trans Ind Electron 58(1):36–39

    Article  Google Scholar 

  20. Kazmierkowski MP, Jasinski M, Wrona G (2011) DSP-based control of grid-connected power converters operating under grid distortions. IEEE Trans Ind Inf 7(2):204–211

    Article  Google Scholar 

  21. Li R, Xu D (2013) Parallel operation of full power converters in permanent—magnet direct-drive wind power generation system. IEEE Trans Ind Electron 60(4):1619–1629

    Article  Google Scholar 

  22. Manwell JF, McGowan JG, Rogers AL (2002) Wind energy explained: theory, design, and application. Wiley, West Sussex

    Google Scholar 

  23. Milivojevic N, Krishnamurthy M, Emadi A, Stamenkovic I (2011) Theory and implementation of a simple digital control strategy for brushless DC generators. IEEE Trans Power Electron 26(11):3345–3356

    Article  Google Scholar 

  24. Mirecki A, Roboam X, Richardeau F (2007) Architecture complexity and energy efficiency of small wind turbines. IEEE Trans Ind Electron 54(1):660–670

    Article  Google Scholar 

  25. Morren J, de Haan SWH (2005) Ride through of wind turbines with doubly-fed induction generator during a voltage dip. IEEE Trans Energy Convers 20(2):435–441

    Article  Google Scholar 

  26. Nagliero A, Mastromauro RA, Monopoli VG, Liserre M, DellAquila A (2011) Analysis of a universal inverter working in grid-connected, stand-alone and micro-grid. In: Proceedings of the ISIE 2010, Bari, Italy, pp 650–657

    Google Scholar 

  27. Nagliero A, Mastromauro RA, Ricchiuto D, Liserre M (2011) Harmonic control strategy for universal operation of wind turbine systems. In: Proceedings of the power engineering 2011, Malaga, Spain, pp 1–5

    Google Scholar 

  28. Nagliero A, Mastromauro RA, Ricchiuto D, Liserre M, Nitti M (2011) Gain-scheduling-based droop control for universal operation of small wind turbine systems. In: Proceedings of the ISIE 2011, Gdansk, Poland, pp 1459–1464

    Google Scholar 

  29. National Renewable Energy Lab, http://www.nrel.gov/

  30. Nguyen TH, Lee D-C (2013) Advanced fault ride-through technique for PMSG wind turbine systems using line-side converter as STATCOM. IEEE Trans Ind Electron 60(7):2842–2850

    Article  Google Scholar 

  31. Office of Energy Efficiency and Renewable Energy, http://energy.gov/eere/energybasics

  32. Oliveira DS, Reis MM, Silva C, Colado Barreto L, Antunes F, Soares BL (2010) A three-phase high-frequency semi-controlled rectifier for PM WECS. IEEE Trans Power Electron 25(3):677–685

    Article  Google Scholar 

  33. Orlando NA, Liserre M, Monopoli VG, Mastromauro RA, DellAquila A (2008) Comparison of power converter topologies for permanent magnet small wind turbine system. In: Proceedings of the international symposium on industrial electronics, pp 2359–2364, June 2008

    Google Scholar 

  34. Ozgener O (2006) A small wind turbine system (SWTS) application and its performance analysis. Energy Convers Manag 47:1326–1337

    Article  Google Scholar 

  35. Pao LY, Johnson KE (2011) Control of wind turbines: approaches, challenges and recent developments. IEEE Control Syst Mag 11(4):44–62

    Google Scholar 

  36. Papathanassiou A, Papadopoulos MP (1999) Dynamic behavior of variable speed wind turbines under stochastic wind. IEEE Trans Energy Convers, 1617–1623

    Google Scholar 

  37. Ricchiuto D, Liserre M, Mastromauro R, DellAquila A, Pigazo A (2011) Fractional-order based droop control of an universal wind-turbine system. In: Proceedings of the EPE 2011, p 110

    Google Scholar 

  38. Rizo M, Bueno E, DellAquila A, Liserre M, Mastromauro RA (2011) Generalized controller for small wind turbines working grid-connected and stand-alone. In: Proceedings of the ICCEP 2011, Ischia, pp 51–55

    Google Scholar 

  39. Simoes MG, Chakraborty S, Wood R (2003) Induction generators for small wind energy. IEEE Power Electron Soc Newsl 18(3):19–23

    Google Scholar 

  40. Teodorescu R, Blaabjerg F (2004) Flexible control of small wind turbines with grid failure detection operating in stand. Alone and grid connected mode. IEEE Trans Power Electron 19(5):1323–1332

    Article  Google Scholar 

  41. Thongam JS, Bouchard P, Beguanne R, Okou AF, Merabet AF (2011) Control of variable speed wind energy conversion system using a wind speed sensorless optimum speed MPPT control method. In: Proceedings of the 37th annual conference on IEEE industrial electronics society, IECON11, Melbourne, Australia, November 7–10, pp 855–860

    Google Scholar 

  42. Wang Q, Chang L (2004) An intelligent maximum power extraction algorithm for inverter-based variable speed wind turbine systems. IEEE Trans Power Electron 19(5):1242–1249

    Article  Google Scholar 

  43. Wang J, Xu D, Wu B, Luo Z (2011) A low-cost rectifier topology for variable-speed high-power PMSG wind turbines. IEEE Trans Power Electron 26(8):2192–2200

    Article  Google Scholar 

  44. Wang G, Yang R, Xu D (2013) DSP-based control of sensorless IPMSM drives for wide-speed-range operation. IEEE Trans Ind Electron 60(2):720–727

    Article  Google Scholar 

  45. Wilamowski B, Irwin D (2011) The industrial electronics handbook power electron and motor drives. 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  46. Xia Y, Ahmed KH, Williams BW (2013) Wind turbine power coefficient analysis of a new maximum power point tracking technique. IEEE Trans Ind Electron 60(3):1122–1132

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdi S. Mahmoud .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mahmoud, M.S., AL-Sunni, F.M. (2015). Distributed Generation Plants. In: Control and Optimization of Distributed Generation Systems. Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-16910-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16910-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16909-5

  • Online ISBN: 978-3-319-16910-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics