Skip to main content

More Ergodic Theorems

  • Chapter
  • 4674 Accesses

Part of the book series: Graduate Texts in Mathematics ((GTM,volume 272))

Abstract

As we saw in previous chapters, ergodic theorems, even though being originally motivated by a recurrence question from physics, found applications in unexpected areas such as number theory. So it is not surprising that they attracted continuous attention among the mathematical community, thus leading to various generalizations and extensions. In this chapter we describe a very few of them.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   29.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   39.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   39.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Every real story is a Neverending Story.

  2. 2.

    Die unendliche Geschichte, Thienemann Verlag, 2012 ⋅ Translation from: Michael Ende, The Neverending Story, translated by Ralph Mannheim, Puffin Books, 1983.

Bibliography

  • J. Aaronson [1997] An Introduction to Infinite Ergodic Theory, Mathematical Surveys and Monographs, vol. 50, American Mathematical Society, Providence, RI, 1997.

    Google Scholar 

  • I. Assani [2003] Wiener Wintner Ergodic Theorems, World Scientific Publishing Co. Inc., River Edge, NJ, 2003.

    Google Scholar 

  • I. Assani and K. Presser [2013] A survey on the return time theorem, Ergodic Theory and Dynamical Systems, Proceedings in Mathematics, De Gruyter, 2013, pp. 19–58.

    Google Scholar 

  • T. Austin [2010] On the norm convergence of non-conventional ergodic averages, Ergodic Theory Dyn. Syst. 30 (2010), no. 2, 321–338.

    Google Scholar 

  • [2014] A proof of Walsh’s convergence theorem using couplings, Int. Math. Res. Notices IMRN (2015), no. 15, 6661–6674.

    Google Scholar 

  • T. Austin, T. Eisner, and T. Tao [2011] Nonconventional ergodic averages and multiple recurrence for von Neumann dynamical systems, Pacific J. Math. 250 (2011), no. 1, 1–60.

    Google Scholar 

  • A. Bátkai, U. Groh, D. Kunszenti-Kovács, and M. Schreiber [2012] Decomposition of operator semigroups onW -algebras, Semigroup Forum 84 (2012), no. 1, 8–24.

    Google Scholar 

  • A. Bellow and V. Losert [1985] The weighted pointwise ergodic theorem and the individual ergodic theorem along subsequences, Trans. Amer. Math. Soc. 288 (1985), no. 1, 307–345.

    Google Scholar 

  • A. Bellow [1989] Perturbation of a sequence, Adv. Math. 78 (1989), no. 2, 131–139.

    Google Scholar 

  • D. Berend, M. Lin, J. M. Rosenblatt, and A. Tempelman [2002] Modulated and subsequential ergodic theorems in Hilbert and Banach spaces, Ergodic Theory Dyn. Syst. 22 (2002), no. 6, 1653–1665.

    Google Scholar 

  • V. Bergelson, M. Boshernitzan, and J. Bourgain [1994] Some results on nonlinear recurrence, J. Anal. Math. 62 (1994), 29–46.

    Article  MATH  MathSciNet  Google Scholar 

  • [1996] Ergodic Ramsey theory—an update, Ergodic theory of Z d actions (Warwick, 1993–1994), London Math. Soc. Lecture Note Ser., vol. 228, Cambridge University Press, Cambridge, 1996, pp. 1–61.

    Google Scholar 

  • V. Bergelson and R. McCutcheon [2000] An ergodic IP polynomial Szemerédi theorem, Mem. Amer. Math. Soc. 146 (2000), no. 695, viii+106.

    Google Scholar 

  • C. Beyers, R. Duvenhage, and A. Ströh [2010] The Szemerédi property in ergodic W -dynamical systems, J. Operator Theory 64 (2010), no. 1, 35–67.

    Google Scholar 

  • M. Boshernitzan, G. Kolesnik, A. Quas, and M. Wierdl [2005] Ergodic averaging sequences, J. Anal. Math. 95 (2005), 63–103.

    Article  MATH  MathSciNet  Google Scholar 

  • [1988a] An approach to pointwise ergodic theorems, Geometric aspects of functional analysis (1986/87), Lecture Notes in Math., vol. 1317, Springer, Berlin, 1988, pp. 204–223.

    Google Scholar 

  • [1988b] Return time sequences of dynamical systems, preprint, IHES, 3/1988.

    Google Scholar 

  • [1989] Pointwise ergodic theorems for arithmetic sets, Inst. Hautes Études Sci. Publ. Math. (1989), no. 69, 5–45. With an appendix by the author, H. Furstenberg, Y. Katznelson and D. S. Ornstein.

    Google Scholar 

  • [1990] Double recurrence and almost sure convergence, J. Reine Angew. Math. 404 (1990), 140–161.

    Google Scholar 

  • J. Bourgain, H. Furstenberg, Y. Katznelson, and D. S. Ornstein [1989] Appendix on return-time sequences, Inst. Hautes Études Sci. Publ. Math. (1989), no. 69, 42–45.

    Google Scholar 

  • Z. Buczolich and R. D. Mauldin [2010] Divergent square averages, Ann. Math. (2) 171 (2010), no. 3, 1479–1530.

    Google Scholar 

  • J.-P. Conze [1973] Convergence des moyennes ergodiques pour des sous-suites, Contributions au calcul des probabilités, Soc. Math. France, Paris, 1973, pp. 7–15. Bull. Soc. Math. France, Mém. No. 35.

    Google Scholar 

  • T. de la Rue [2009] Notes on Austin’s multiple ergodic theorem, preprint, arXiv:0907.0538, 2009.

    Google Scholar 

  • C. Demeter [2010] On some maximal multipliers in L p, Rev. Mat. Iberoam. 26 (2010), no. 3, 947–964.

    Google Scholar 

  • C. Demeter, M. T. Lacey, T. Tao, and C. Thiele [2008] Breaking the duality in the return times theorem, Duke Math. J. 143 (2008), no. 2, 281–355.

    Google Scholar 

  • R. Duvenhage [2009] Bergelson’s theorem for weakly mixing C -dynamical systems, Studia Math. 192 (2009), no. 3, 235–257.

    Google Scholar 

  • [2013] Linear sequences and weighted ergodic theorems, Abstr. Appl. Anal. (2013), Art. ID 815726.

    Google Scholar 

  • T. Eisner and D. Kunszenti-Kovács [2013] On the entangled ergodic theorem, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) XII (2013), 141–156.

    Google Scholar 

  • T. Eisner and P. Zorin-Kranich [2013] Uniformity in the Wiener-Wintner theorem for nilsequences, Discrete Contin. Dyn. Syst. 33 (2013), no. 8, 3497–3516.

    Google Scholar 

  • F. Fidaleo [2007] On the entangled ergodic theorem, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 10 (2007), no. 1, 67–77.

    Google Scholar 

  • [2010] The entangled ergodic theorem in the almost periodic case, Linear Algebra Appl. 432 (2010), no. 2–3, 526–535.

    Google Scholar 

  • N. Frantzikinakis, M. Johnson, E. Lesigne, and M. Wierdl [2010] Powers of sequences and convergence of ergodic averages, Ergodic Theory Dyn. Syst. 30 (2010), no. 5, 1431–1456.

    Google Scholar 

  • N. Frantzikinakis [2006] Uniformity in the polynomial Wiener-Wintner theorem, Ergodic Theory Dyn. Syst. 26 (2006), no. 4, 1061–1071.

    Google Scholar 

  • [1981] Recurrence in Ergodic Theory and Combinatorial Number Theory, Princeton University Press, Princeton, NJ, 1981. M. B. Porter Lectures.

    Google Scholar 

  • A. Gomilko, M. Haase, and Y. Tomilov [2011] On rates in mean ergodic theorems, Math. Res. Lett. 18 (2011), no. 2, 201–213.

    Google Scholar 

  • A. Gorodnik and A. Nevo [2010] The Ergodic Theory of Lattice Subgroups, Annals of Mathematics Studies, vol. 172, Princeton University Press, Princeton, NJ, 2010.

    Google Scholar 

  • G. H. Hardy [1971] Orders of Infinity. The Infinitärcalcül of Paul du Bois-Reymond, Hafner Publishing Co., New York, 1971. Reprint of the 1910 edition, Cambridge Tracts in Mathematics and Mathematical Physics, No. 12.

    Google Scholar 

  • [2009] Ergodic seminorms for commuting transformations and applications, Studia Math. 195 (2009), no. 1, 31–49.

    Google Scholar 

  • [2009] Uniformity seminorms on ℓ and applications, J. Anal. Math. 108 (2009), 219–276.

    Google Scholar 

  • R. L. Jones and M. Wierdl [1994] Convergence and divergence of ergodic averages, Ergodic Theory Dyn. Syst. 14 (1994), no. 3, 515–535.

    Google Scholar 

  • M. Junge and Q. Xu [2007] Noncommutative maximal ergodic theorems, J. Amer. Math. Soc. 20 (2007), no. 2, 385–439.

    Google Scholar 

  • J.-P. Kahane [1985] Some Random Series of Functions, 2nd ed., Cambridge Studies in Advanced Mathematics, vol. 5, Cambridge University Press, Cambridge, 1985.

    Google Scholar 

  • A. Karlsson and F. Ledrappier [2011] Noncommutative ergodic theorems, Geometry, rigidity, and group actions, Chicago Lectures in Math., University of Chicago Press, Chicago, IL, 2011, pp. 396–418.

    MathSciNet  Google Scholar 

  • B. Krause [2014] Polynomial ergodic averages converge rapidly: Variations on a theorem of Bourgain, preprint, arXiv:1402.1803v1, 2014.

    Google Scholar 

  • U. Krengel [1971] On the individual ergodic theorem for subsequences, Ann. Math. Statist. 42 (1971), 1091–1095.

    Article  MATH  MathSciNet  Google Scholar 

  • [1985] Ergodic Theorems, de Gruyter Studies in Mathematics, vol. 6, Walter de Gruyter & Co., Berlin, 1985. With a supplement by Antoine Brunel.

    Google Scholar 

  • B. Kümmerer [1978] A non-commutative individual ergodic theorem, Invent. Math. 46 (1978), no. 2, 139–145.

    Google Scholar 

  • D. Kunszenti-Kovács [2010] On the limit of square-Cesàro means of contractions on Hilbert spaces, Arch. Math. (Basel) 94 (2010), no. 5, 459–466.

    Google Scholar 

  • D. Kunszenti-Kovács, R. Nittka, and M. Sauter [2011] On the limits of Cesàro means of polynomial powers, Math. Z. 268 (2011), no. 3–4, 771–776.

    Google Scholar 

  • M. Lacey [1997] On an inequality due to Bourgain, Illinois J. Math. 41 (1997), no. 2, 231–236.

    Google Scholar 

  • M. Lacey, K. Petersen, M. Wierdl, and D. Rudolph [1994] Random ergodic theorems with universally representative sequences, Ann. Inst. H. Poincaré Probab. Statist. 30 (1994), no. 3, 353–395.

    Google Scholar 

  • E. C. Lance [1976] A strong noncommutative ergodic theorem, Bull. Amer. Math. Soc. 82 (1976), no. 6, 925–926.

    Google Scholar 

  • P. LaVictoire, A. Parrish, and J. Rosenblatt [2014] Multivariable averaging on sparse sets, Trans. Amer. Math. Soc. 366 (2014), no. 6, 2975–3025.

    Google Scholar 

  • [2005b] Pointwise convergence of ergodic averages for polynomial actions of ℤ d by translations on a nilmanifold, Ergodic Theory Dyn. Syst. 25 (2005), no. 1, 215–225.

    Google Scholar 

  • D. Lenz [2009a] Aperiodic order via dynamical systems: diffraction for sets of finite local complexity, Ergodic theory, Contemp. Math., vol. 485, American Mathematical Society, Providence, RI, 2009, pp. 91–112.

    Google Scholar 

  • [2009b] Continuity of eigenfunctions of uniquely ergodic dynamical systems and intensity of Bragg peaks, Comm. Math. Phys. 287 (2009), no. 1, 225–258.

    Google Scholar 

  • E. Lesigne [1990] Un théorème de disjonction de systèmes dynamiques et une généralisation du théorème ergodique de Wiener-Wintner, Ergodic Theory Dyn. Syst. 10 (1990), no. 3, 513–521.

    Google Scholar 

  • [1993] Spectre quasi-discret et théorème ergodique de Wiener-Wintner pour les polynômes, Ergodic Theory Dyn. Syst. 13 (1993), no. 4, 767–784.

    Google Scholar 

  • Y.-C. Li, R. Sato, and S.-Y. Shaw [2007] Convergence theorems and Tauberian theorems for functions and sequences in Banach spaces and Banach lattices, Israel J. Math. 162 (2007), 109–149.

    MATH  MathSciNet  Google Scholar 

  • V. Liebscher [1999] Note on entangled ergodic theorems, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 2 (1999), no. 2, 301–304.

    Google Scholar 

  • M. Lin, J. Olsen, and A. Tempelman [1999] On modulated ergodic theorems for Dunford-Schwartz operators, Proceedings of the Conference on Probability, Ergodic Theory, and Analysis (Evanston, IL, 1997), Illinois J. Math. 43 (1999), no. 3, 542–567.

    Google Scholar 

  • E. Lindenstrauss [2001] Pointwise theorems for amenable groups, Invent. Math. 146 (2001), no. 2, 259–295.

    Google Scholar 

  • R. Nagel [1973] Mittelergodische Halbgruppen linearer Operatoren, Ann. Inst. Fourier (Grenoble) 23 (1973), no. 4, 75–87.

    Google Scholar 

  • C. P. Niculescu, A. Ströh, and L. Zsidó [2003] Noncommutative extensions of classical and multiple recurrence theorems, J. Operator Theory 50 (2003), no. 1, 3–52.

    Google Scholar 

  • H. Niederreiter [1975] On a paper of Blum, Eisenberg, and Hahn concerning ergodic theory and the distribution of sequences in the Bohr group, Acta Sci. Math. (Szeged) 37 (1975), 103–108.

    Google Scholar 

  • D. S. Ornstein and B. Weiss [1992] Subsequence ergodic theorems for amenable groups, Israel J. Math. 79 (1992), no. 1, 113–127.

    Google Scholar 

  • A. Parrish [2012] Perturbation of sparse ergodic averages, preprint, arXiv:1211.2010, 2012.

    Google Scholar 

  • E. A. Robinson, Jr. [1994] On uniform convergence in the Wiener-Wintner theorem, J. London Math. Soc. (2) 49 (1994), no. 3, 493–501.

    Google Scholar 

  • J. M. Rosenblatt [1994] Norm convergence in ergodic theory and the behavior of Fourier transforms, Canad. J. Math. 46 (1994), no. 1, 184–199.

    Google Scholar 

  • J. M. Rosenblatt and M. Wierdl [1995] Pointwise ergodic theorems via harmonic analysis, Ergodic theory and its connections with harmonic analysis (Alexandria, 1993), London Math. Soc. Lecture Note Ser., vol. 205, Cambridge University Press, Cambridge, 1995, pp. 3–151.

    MathSciNet  Google Scholar 

  • D. J. Rudolph [1994] A joinings proof of Bourgain’s return time theorem, Ergodic Theory Dyn. Syst. 14 (1994), no. 1, 197–203.

    Google Scholar 

  • [1998] Fully generic sequences and a multiple-term return-times theorem, Invent. Math. 131 (1998), no. 1, 199–228.

    Google Scholar 

  • S. I. Santos and C. Walkden [2007] Topological Wiener-Wintner ergodic theorems via non-Abelian Lie group extensions, Ergodic Theory Dyn. Syst. 27 (2007), no. 5, 1633–1650.

    Google Scholar 

  • R. Satō [1978] On abstract mean ergodic theorems, Tôhoku Math. J. (2) 30 (1978), no. 4, 575–581.

    Google Scholar 

  • [1979] On abstract mean ergodic theorems. II, Math. J. Okayama Univ. 21 (1979), no. 2, 141–147.

    Google Scholar 

  • M. Schreiber [2013a] Topological Wiener–Wintner theorems for amenable semigroups, PhD thesis, University of Tübingen, 2013.

    Google Scholar 

  • [2013b] Uniform families of ergodic operator nets, Semigroup Forum 86 (2013), no. 2, 321–336.

    Google Scholar 

  • [2014] Topological Wiener–Wintner theorems for amenable operator semigroups, Ergodic Theory Dyn. Syst. 34 (2014), no. 5, 1674–1698.

    Google Scholar 

  • [2008] Norm convergence of multiple ergodic averages for commuting transformations, Ergodic Theory Dyn. Syst. 28 (2008), no. 2, 657–688.

    Google Scholar 

  • A. Tempelman [1992] Ergodic Theorems for Group Actions, Mathematics and its Applications, vol. 78, Kluwer Academic Publishers Group, Dordrecht, 1992. Informational and thermodynamical aspects. Translated and revised from the 1986 Russian original.

    Google Scholar 

  • J.-P. Thouvenot [1990] La convergence presque sûre des moyennes ergodiques suivant certaines sous-suites d’entiers (d’après Jean Bourgain), Astérisque (1990), no. 189–190, Exp. No. 719, 133–153. Séminaire Bourbaki, Vol. 1989/90.

    Google Scholar 

  • H. Towsner [2009] Convergence of diagonal ergodic averages, Ergodic Theory Dyn. Syst. 29 (2009), no. 4, 1309–1326.

    Google Scholar 

  • M. N. Walsh [2012] Norm convergence of nilpotent ergodic averages, Ann. Math. (2) 175 (2012), no. 3, 1667–1688.

    Google Scholar 

  • [1996] Topological Wiener-Wintner ergodic theorems and a random L 2 ergodic theorem, Ergodic Theory Dyn. Syst. 16 (1996), no. 1, 179–206.

    Google Scholar 

  • N. Wiener and A. Wintner [1941] Harmonic analysis and ergodic theory, Amer. J. Math. 63 (1941), 415–426.

    Article  MathSciNet  Google Scholar 

  • M. Wierdl [1988] Pointwise ergodic theorem along the prime numbers, Israel J. Math. 64 (1988), no. 3, 315–336.

    Google Scholar 

  • [1998] Perturbation of plane curves and sequences of integers, Illinois J. Math. 42 (1998), no. 1, 139–153.

    Google Scholar 

  • P. Zorin-Kranich [2011] Norm convergence of nilpotent ergodic averages on amenable groups, J. Analyse Math., to appear, preprint, arXiv:1111.7292, 2011.

    Google Scholar 

  • [2014a] Cube spaces and the multiple term return times theorem, Ergodic Theory Dyn. Syst. 34 (2014), no. 5, 1747–1760.

    Google Scholar 

  • [2014b] Return times theorem for amenable groups, Israel J. Math. 204 (2014), 1–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Tanja Eisner, Bálint Farkas, Markus Haase, and Rainer Nagel

About this chapter

Cite this chapter

Eisner, T., Farkas, B., Haase, M., Nagel, R. (2015). More Ergodic Theorems. In: Operator Theoretic Aspects of Ergodic Theory. Graduate Texts in Mathematics, vol 272. Springer, Cham. https://doi.org/10.1007/978-3-319-16898-2_21

Download citation

Publish with us

Policies and ethics