Skip to main content

Part of the book series: Mathematical Biosciences Institute Lecture Series ((STOCHBS,volume 1.2))

  • 2101 Accesses

Abstract

It is often the case that one would like to simulate a few paths of a particular model in order to gain insight into its possible behavior. Sometimes one would like to go further and simulate many paths in order to perform Monte Carlo experiments and produce estimates of expectations. In this chapter, we provide an overview of numerical methods for stochastically modeled biochemical systems. We briefly introduce the basic ideas behind Monte Carlo estimation and discuss ways to generate the necessary random variables via transformations of uniform random variables. We introduce two methods that provide statistically exact sample paths, and one method that provides approximate sample paths. Finally, we introduce the multi-level Monte Carlo estimator for the efficient computation of expectations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. T. Gillespie. A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys., 22:403–434, 1976.

    Google Scholar 

  2. D. T. Gillespie. Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem., 81(25):2340–2361, 1977.

    Google Scholar 

  3. David F. Anderson. A modified next reaction method for simulating chemical systems with time dependent propensities and delays. J. Chem. Phys., 127(21): 214107, 2007.

    Google Scholar 

  4. M.A. Gibson and J. Bruck. Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A, 105:1876–1889, 2000.

    Google Scholar 

  5. Daniel T. Gillespie. Approximate accelerated stochastic simulation of chemically reacting systems. J. Chem. Phys., 115(4):1716–1733, 2001. doi http://dx.doi.org/10.1063/1.1378322. URL http://scitation.aip.org/content/aip/journal/jcp/115/4/10.1063/1.1378322.

  6. David F. Anderson. Incorporating postleap checks in tau-leaping. J. Chem. Phys., 128(5):054103, 2008.

    Google Scholar 

  7. David F. Anderson and Masanori Koyama. Weak error analysis of numerical methods for stochastic models of population processes. SIAM: Multiscale Modeling and Simulation, 10(4):1493–1524, 2012.

    Google Scholar 

  8. David F. Anderson, Arnab Ganguly, and Thomas G. Kurtz. Error analysis of tau-leap simulation methods. Annals of Applied Probability, 21(6):2226–2262, 2011.

    Google Scholar 

  9. Tiejun Li. Analysis of explicit tau-leaping schemes for simulating chemically reacting systems. SIAM Multiscale Model. Simul., 6(2):417–436, 2007.

    Google Scholar 

  10. Muruhan Rathinam, Linda R. Petzold, Yang Cao, and Daniel T. Gillespie. Consistency and stability of tau-leaping schemes for chemical reaction systems. SIAM Multiscale Model. Simul., 3:867–895, 2005.

    Google Scholar 

  11. Yang Cao, Daniel T. Gillespie, and Linda R. Petzold. Efficient step size selection for the tau-leaping simulation method. J. Chem. Phys., 124:044109, 2006.

    Google Scholar 

  12. D. T. Gillespie and Linda R. Petzold. Improved leap-size selection for accelerated stochastic simulation. J. Chem. Phys., 119(16):8229–8234, 2003.

    Google Scholar 

  13. Yang Cao, Daniel T. Gillespie, and Linda R. Petzold. Avoiding negative populations in explicit Poisson tau-leaping. J. Chem. Phys., 123:054104, 2005.

    Google Scholar 

  14. Abhijit Chatterjee and Dionisios G. Vlachos. Binomial distribution based τ-leap accelerated stochastic simulation. J. Chem. Phys., 122:024112, 2005.

    Google Scholar 

  15. T. Tian and K. Burrage. Binomial leap methods for simulating stochastic chemical kinetics. J. Chem. Phys., 121:10356, 2004.

    Google Scholar 

  16. Muruhan Rathinam, Linda R. Petzold, Yang Cao, and Daniel T. Gillespie. Stiffness in stochastic chemically reacting systems: The implicit tau-leaping method. J. Chem. Phys., 119:12784–12794, 2003.

    Google Scholar 

  17. K. Burrage and T. Tian. Poisson Runge-Kutta methods for chemical reaction systems. In Y. Lu, W. Sun, and T. Tang, editors, Advances in Scientific Computing and Applications, pages 82–96. Science Press, 2003.

    Google Scholar 

  18. Mike B. Giles. Multilevel Monte Carlo path simulation. Operations Research, 56:607–617, 2008.

    Google Scholar 

  19. Stefan Heinrich. Multilevel Monte Carlo methods. Springer, Lect. Notes Comput. Sci., 2179:58–67, 2001.

    Google Scholar 

  20. David F. Anderson and Desmond J. Higham. Multi-level Monte Carlo for continuous time Markov chains, with applications in biochemical kinetics. SIAM: Multiscale Modeling and Simulation, 10(1):146–179, 2012.

    Google Scholar 

  21. David F. Anderson, Desmond J. Higham,, and Yu Sun. Complexity analysis of multilevel Monte Carlo tau-leaping. accepted to SIAM Journal on Numerical Analysis, 2014b.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Anderson, D.F., Kurtz, T.G. (2015). Numerical methods. In: Stochastic Analysis of Biochemical Systems. Mathematical Biosciences Institute Lecture Series(), vol 1.2. Springer, Cham. https://doi.org/10.1007/978-3-319-16895-1_5

Download citation

Publish with us

Policies and ethics