Skip to main content

Review of Vector Calculus

  • Chapter
  • First Online:
The Finite Volume Method in Computational Fluid Dynamics

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 113))

Abstract

This chapter sets the ground for the derivation of the conservation equations by providing a brief review of the continuum mechanics tools needed for that purpose while establishing some of the mathematical notations and procedures that will be used throughout the book. The review is by no mean comprehensive and assumes a basic knowledge of the fundamentals of continuum mechanics. A short introduction of the elements of linear algebra including vectors, matrices, tensors, and their practices is given. The chapter ends with an examination of the fundamental theorems of vector calculus, which constitute the elementary building blocks needed for manipulating and solving these conservation equations either analytically or numerically using computational fluid dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arfken G (1985) Mathematical methods for physicists, 3rd edn. Academic Press, Orlando, FL

    Google Scholar 

  2. Aris R (1989) Vectors, tensors, and the basic equations of fluid mechanics. Dover, New York

    MATH  Google Scholar 

  3. Crowe MJ (1985) A history of vector analysis: the evolution of the idea of a vectorial system. Dover, New York

    MATH  Google Scholar 

  4. Marsden JE, Tromba AJ (1996) Vector calculus. WH Freeman, New York

    MATH  Google Scholar 

  5. Jeffreys H, Jeffreys BS (1988) methods of mathematical physics. Cambridge University Press, Cambridge, England

    Google Scholar 

  6. Morse PM, Feshbach H (1953) Methods of theoretical physics, Part I. McGraw-Hill, New York

    Google Scholar 

  7. Schey HM (1973) Div, grad, curl, and all that: an informal text on vector calculus. Norton, New York

    MATH  Google Scholar 

  8. Schwartz M, Green S, Rutledge W (1960) A vector analysis with applications to geometry and physics. Harper Brothers, New York

    Google Scholar 

  9. M1 Anton H (1987) Elementary linear algebra. Wiley, New York

    Google Scholar 

  10. Bretscher O (2005) Linear algebra with applications. Prentice Hall, New Jersey

    Google Scholar 

  11. Bronson R (1989), Schaum’s outline of theory and problems of matrix operations. McGraw–Hill, New York

    Google Scholar 

  12. Arnold VI, Cooke R (1992) Ordinary differential equations. Springer-Verlag, Berlin, DE; New York, NY

    Google Scholar 

  13. Horn RA, Johnson CR (1985) Matrix analysis. Cambridge University Press, Cambridge

    Google Scholar 

  14. Brown WC (1991) Matrices and vector spaces. Marcel Dekker, New York

    MATH  Google Scholar 

  15. Golub GH, Van Loan CF (1996) Matrix Computations. Johns Hopkins, Baltimore

    Google Scholar 

  16. Greub WH (1975) Linear algebra, graduate texts in mathematics. Springer-Verlag, Berlin, DE; New York, NY

    Google Scholar 

  17. Lang S (1987) Linear algebra. Springer-Verlag, Berlin, DE; New York, NY

    Google Scholar 

  18. Mirsky L (1990) An introduction to linear algebra. Courier Dover Publications, New York

    Google Scholar 

  19. Nering ED (1970) Linear algebra and matrix theory. Wiley, New York

    MATH  Google Scholar 

  20. Spiegel MR (1959) Schaum’s outline of theory and problems of vector analysis and an introduction to tensor analysis. Schaum, New York

    Google Scholar 

  21. Heinbockel JH (2001) Introduction to tensor calculus and continuum mechanics. Trafford Publishing, Victoria

    Google Scholar 

  22. Williamson R, Trotter H (2004) Multivariable mathematics. Pearson Education, Inc, New York

    Google Scholar 

  23. Cauchy A (1846) Sur les intégrales qui s’étendent à tous les points d’une courbe fermée. Comptes rendus 23:251–255

    Google Scholar 

  24. Riley KF, Hobson MP, Bence SJ (2010) Mathematical methods for physics and engineering. Cambridge University Press, Cambridge

    Google Scholar 

  25. Spiegel MR, Lipschutz S, Spellman D (2009) Vector analysis. Schaum’s Outlines, McGraw Hill (USA)

    Google Scholar 

  26. Wrede R, Spiegel MR (2010) Advanced calculus. Schaum’s Outline Series

    Google Scholar 

  27. Katz VJ (1979) The history of stokes’s theorem. Math Mag (Math Assoc Am) 52:146–156

    Article  MATH  Google Scholar 

  28. Morse PM, Feshbach H (1953) Methods of theoretical physics, Part I. McGraw-Hill, New York

    Google Scholar 

  29. Stewart J (2008) Vector calculus, Calculus: early transcendentals. Thomson Brooks/Cole, Connecticut

    Google Scholar 

  30. Lerner RG, Trigg GL (1994) Encyclopaedia of physics. VHC

    Google Scholar 

  31. Byron F, Fuller R (1992) Mathematics of classical and quantum physics. Dover Publications, New York

    Google Scholar 

  32. Spiegel MR, Lipschutz S, Spellman D (2009) Vector analysis. Schaum’s Outlines, McGraw Hill

    Google Scholar 

  33. Flanders H (1973) Differentiation under the integral sign. Am Math Monthly 80(6):615–627

    Article  MATH  MathSciNet  Google Scholar 

  34. Boros G, Moll V (2004) Irresistible integrals: symbolics, analysis and experiments in the evaluation of integrals. Cambridge University Press, Cambridge, England

    Book  Google Scholar 

  35. Hijab O (1997) Introduction to calculus and classical analysis. Springer, New York

    MATH  Google Scholar 

  36. Kaplan W (1992) Advanced calculus. Addison-Wesley, Reading, MA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Moukalled .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Moukalled, F., Mangani, L., Darwish, M. (2016). Review of Vector Calculus. In: The Finite Volume Method in Computational Fluid Dynamics. Fluid Mechanics and Its Applications, vol 113. Springer, Cham. https://doi.org/10.1007/978-3-319-16874-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16874-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16873-9

  • Online ISBN: 978-3-319-16874-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics