Skip to main content

Organic Semiconductor Electroluminescent Materials

  • Chapter
  • First Online:
Organic Optoelectronic Materials

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 91))

Abstract

This chapter reviews the important progress made on small molecule electroluminescent materials used in organic light-emitting diode (OLED). In many cases we describe not only the material structures but also the properties associated with these materials, such as energy level, absorption and photoluminescence (PL) peaks, PL quantum yield, exciton life time, and so on. The performances of related devices are covered as well if they are available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tang CW, VanSlyke SA (1987) Organic electroluminescent diodes. Appl Phys Lett 51(12):913–915

    Google Scholar 

  2. Pope M, Kallmann H, Magnante P (1963) Electroluminescence in organic crystals. J Chem Phys 38(8):2042–2043

    Google Scholar 

  3. Vincett PS, Barlow WA, Hann RA, Roberts GG (1982) Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films. Thin Solid Films 94(2):171–183

    Google Scholar 

  4. Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Burns PL, Holmes AB (1990) Light-emitting diodes based on conjugated polymers. Nature 347(6293):539–541

    Google Scholar 

  5. Baldo MA, O’Brien DF, You Y, Shoustikov A, Sibley S, Thompson ME, Forrest SR (1998) Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395(6698):151–154

    Google Scholar 

  6. Endo A, Ogasawara M, Takahashi A, Yokoyama D, Kato Y, Adachi C (2009) Thermally activated delayed fluorescence from Sn4+–porphyrin complexes and their application to organic light-emitting diodes—a novel mechanism for electroluminescence. Adv Mater 21(47):4802–4806

    Google Scholar 

  7. Goushi K, Yoshida K, Sato K, Adachi C (2012) Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion. Nat Photonics 6(4):253–258

    Google Scholar 

  8. Kim JS, Granstrom M, Friend RH, Johansson N, Salaneck WR, Daik R, Feast WJ, Cacialli F (1998) Indium-tin oxide treatments for single- and double-layer polymeric light-emitting diodes: the relation between the anode physical, chemical, and morphological properties and the device performance. J Appl Phys 84(12):6859–6870

    Google Scholar 

  9. So SK, Choi WK, Cheng CH, Leung LM, Kwong CF (1999) Surface preparation and characterization of indium tin oxide substrates for organic electroluminescent devices. Appl Phys A-mater 68(4):447–450

    Google Scholar 

  10. Mason MG, Hung LS, Tang CW, Lee ST, Wong KW, Wang M (1999) Characterization of treated indium-tin-oxide surfaces used in electroluminescent devices. J Appl Phys 86(3):1688–1692

    Google Scholar 

  11. Van Slyke S, Chen C, Tang C (1996) Organic electroluminescent devices with improved stability. Appl Phys Lett 69:2160–2162

    Google Scholar 

  12. Shirota Y, Okumoto K, Inada H (2000) Thermally stable organic light-emitting diodes using new families of hole-transporting amorphous molecular materials. Synth Met 111:387–391

    Google Scholar 

  13. Kim WH, Mäkinen AJ, Nikolov N, Shashidhar R, Kim H, Kafafi ZH (2002) Molecular organic light-emitting diodes using highly conducting polymers as anodes. Appl Phys Lett 80(20):3844–3846

    Google Scholar 

  14. Jung S-H, Choi J-H, Yang S-M, Cho W-J, Ha C-S (2001) Syntheses and characterization of soluble phthalocyanine derivatives for organic electroluminescent devices. Mat Sci Eng B 85(2):160–164

    Google Scholar 

  15. Son S-H, Jang J-G, Jeon S-Y, Yoon S-H, Lee J-C, Kim K-K (2004) Electroluminescent devices with low work function anode. WO Patent 2, 004, 054, 326, (2004)

    Google Scholar 

  16. Yang Y, Heeger A (1994) Polyaniline as a transparent electrode for polymer light-emitting diodes: Lower operating voltage and higher efficiency. Appl Phys Lett 64(10):1245–1247

    Google Scholar 

  17. Gao J, Heeger AJ, Lee JY, Kim CY (1996) Soluble polypyrrole as the transparent anode in polymer light-emitting diodes. Synth Met 82(3):221–223

    Google Scholar 

  18. Deng ZB, Ding XM, Lee ST, Gambling WA (1999) Enhanced brightness and efficiency in organic electroluminescent devices using SiO2 buffer layers. Appl Phys Lett 74(15):2227–2229

    Google Scholar 

  19. Poon CO, Wong FL, Tong SW, Zhang RQ, Lee CS, Lee ST (2003) Improved performance and stability of organic light-emitting devices with silicon oxy-nitride buffer layer. Appl Phys Lett 83(5):1038–1040

    Google Scholar 

  20. Qiu Y, Gao YD, Wang LD, Zhang DQ (2002) Efficient light emitting diodes with Teflon buffer layer. Synth Met 130(3):235–237

    Google Scholar 

  21. Zhao JM, Zhang ST, Wang XJ, Zhan YQ, Wang XZ, Zhong GY, Wang ZJ, Ding XM, Huang W, Hou XY (2004) Dual role of LiF as a hole-injection buffer in organic light-emitting diodes. Appl Phys Lett 84(15):2913–2915

    Google Scholar 

  22. Zhang ZF, Deng ZB, Liang CJ, Zhang MX, Xu DH (2003) Organic light-emitting diodes with a nanostructured TiO2 layer at the interface between ITO and NPB layers. Displays 24(4–5):231–234

    Google Scholar 

  23. Romero DB, Schaer M, Zuppiroli L, Cesar B, Francois B (1995) Effects of doping in polymer light-emitting diodes. Appl Phys Lett 67(12):1659–1661

    Google Scholar 

  24. Huang F, MacDiarmid AG, Hsieh BR (1997) An iodine-doped polymer light-emitting diode. Appl Phys Lett 71(17):2415–2417

    Google Scholar 

  25. Blochwitz J, Pfeiffer M, Fritz T, Leo K (1998) Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material. Appl Phys Lett 73(6):729–731

    Google Scholar 

  26. Yamamori A, Adachi C, Koyama T, Taniguchi Y (1998) Doped organic light emitting diodes having a 650-nm-thick hole transport layer. Appl Phys Lett 72(17):2147–2149

    Google Scholar 

  27. Tang C, VanSlyke S, Chen C (1989) Electroluminescence of doped organic thin films. J Appl Phys 65:3610–3612

    Google Scholar 

  28. Naka S, Tamekawa M, Terashita T, Okada H, Anada H, Onnagawa H (1997) Electrical properties of organic electroluminescent devices with aluminium alloy cathode. Synth Met 91(1):129–130

    Google Scholar 

  29. Wakimoto T, Fukuda Y, Nagayama K, Yokoi A, Nakada H, Tsuchida M (1997) Organic EL cells using alkaline metal compounds as electron injection materials. IEEE Trans Electron Dev 44(8):1245–1248

    Google Scholar 

  30. Ganzorig C, Suga K, Fujihira M (2001) Alkali metal acetates as effective electron injection layers for organic electroluminescent devices. Mat Sci Eng B 85(2–3):140–143

    Google Scholar 

  31. Ganzorig C, Fujihira M (2004) Evidence for alkali metal formation at a cathode interface of organic electroluminescent devices by thermal decomposition of alkali metal carboxylates during their vapor deposition. Appl Phys Lett 85(20):4774–4776

    Google Scholar 

  32. Stossel M, Staudigel J, Steuber F, Blassing J, Simmerer J, Winnacker A (2000) Space-charge-limited electron currents in 8-hydroxyquinoline aluminum. Appl Phys Lett 76(1):115–117

    Google Scholar 

  33. Brown TM, Friend RH, Millard IS, Lacey DJ, Butler T, Burroughes JH, Cacialli F (2003) Electronic line-up in light-emitting diodes with alkali-halide/metal cathodes. J Appl Phys 93(10):6159–6172

    Google Scholar 

  34. Mori T, Fujikawa H, Tokito S, Taga Y (1998) Electronic structure of 8-hydroxyquinoline aluminum/LiF/Al interface for organic electroluminescent device studied by ultraviolet photoelectron spectroscopy. Appl Phys Lett 73(19):2763–2765

    Google Scholar 

  35. Schlaf R, Parkinson BA, Lee PA, Nebesny KW, Jabbour G, Kippelen B, Peyghambarian N, Armstrong NR (1998) Photoemission spectroscopy of LiF coated Al and Pt electrodes. J Appl Phys 84(12):6729–6736

    Google Scholar 

  36. Heil H, Steiger J, Karg S, Gastel M, Ortner H, von Seggern H, Stossel M (2001) Mechanisms of injection enhancement in organic light-emitting diodes through an Al/LiF electrode. J Appl Phys 89(1):420–424

    Google Scholar 

  37. Mason MG, Tang CW, Hung LS, Raychaudhuri P, Madathil J, Giesen DJ, Yan L, Le QT, Gao Y, Lee ST, Liao LS, Cheng LF, Salaneck WR, dos Santos DA, Bredas JL (2001) Interfacial chemistry of Alq3 and LiF with reactive metals. J Appl Phys 89(5):2756–2765

    Google Scholar 

  38. Hung LS, Zhang RQ, He P, Mason G (2002) Contact formation of LiF/Al cathodes in Alq-based organic light-emitting diodes. J Phys D Appl Phys 35(2):103–107

    Google Scholar 

  39. Schmitz C, Schmidt HW, Thelakkat M (2000) Lithium-quinolate complexes as emitter and interface materials in organic light-emitting diodes. Chem Mater 12(10):3012–3019

    Google Scholar 

  40. Liu ZG, Salata OV, Male N (2002) Improved electron injection in organic LED with lithium quinolate/aluminium cathode. Synth Met 128(2):211–214

    Google Scholar 

  41. Fukase A, Kido J (2002) Organic electroluminescent devices having self-doped cathode interface layer. Jpn J Appl Phys 41(3B):L334–L336

    Google Scholar 

  42. Liang FS, Chen JS, Wang LX, Ma DG, Jing XB, Wang FS (2003) A hydroxyphenyloxadiazole lithium complex as a highly efficient blue emitter and interface material in organic light-emitting diodes. J Mater Chem 13(12):2922–2926

    Google Scholar 

  43. Zheng XY, Wu YZ, Sun RG, Zhu WQ, Jiang XY, Zhang ZL, Xu SH (2005) Efficiency improvement of organic light-emitting diodes using 8-hydroxy-quinolinato lithium as an electron injection layer. Thin Solid Films 478(1–2):252–255

    Google Scholar 

  44. Kuwabara Y, Ogawa H, Inada H, Noma N, Shirota Y (1994) Thermally stable multilared organic electroluminescent devices using novel starburst molecules, 4, 4′, 4″-Tri (N-carbazolyl) triphenylamine (TCTA) and 4, 4′, 4″-Tris (3-methylphenylphenylamino) triphenylamine (m-MTDATA), as hole-transport materials. Adv Mater 6(9):677–679

    Google Scholar 

  45. Shirota Y (2000) Organic materials for electronic and optoelectronic devices. J Mater Chem 10(1):1–25

    Google Scholar 

  46. Adachi C, Tsutsui T, Saito S (1989) Organic electroluminescent device having a hole conductor as an emitting layer. Appl Phys Lett 55(15):1489–1491

    Google Scholar 

  47. Shih HT, Lin CH, Shih HH, Cheng CH (2002) High-performance blue electroluminescent devices based on a biaryl. Adv Mater 14(19):1409–1412

    Google Scholar 

  48. Adachi C, Baldo MA, Forrest SR, Thompson ME (2000) High-efficiency organic electrophosphorescent devices with tris(2-phenylpyridine)iridium doped into electron-transporting materials. Appl Phys Lett 77(6):904–906

    Google Scholar 

  49. Jandke M, Strohriegl P, Berleb S, Werner E, Brutting W (1998) Phenylquinoxaline polymers and low molar mass glasses as electron-transport materials in organic light-emitting diodes. Macromolecules 31(19):6434–6443

    Google Scholar 

  50. O’Brien DF, Baldo MA, Thompson ME, Forrest SR (1999) Improved energy transfer in electrophosphorescent devices. Appl Phys Lett 74(3):442–444

    Google Scholar 

  51. Baldo MA, Lamansky S, Burrows PE, Thompson ME, Forrest SR (1999) Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Appl Phys Lett 75(1):4–6

    Google Scholar 

  52. Adamovich VI, Cordero SR, Djurovich PI, Tamayo A, Thompson ME, D’Andrade BW, Forrest SR (2003) New charge-carrier blocking materials for high efficiency OLEDs. Org Electron 4(2–3):77–87

    Google Scholar 

  53. Naka S, Okada H, Onnagawa H, Tsutsui T (2000) High electron mobility in bathophenanthroline. Appl Phys Lett 76(2):197–199

    Google Scholar 

  54. D’Andrade BW, Forrest SR, Chwang AB (2003) Operational stability of electrophosphorescent devices containing p and n doped transport layers. Appl Phys Lett 83(19):3858–3860

    Google Scholar 

  55. Tamao K, Uchida M, Izumizawa T, Furukawa K, Yamaguchi S (1996) Silole derivatives as efficient electron transporting materials. J Am Chem Soc 118(47):11974–11975

    Google Scholar 

  56. Yamaguchi S, Tamao K (1998) Silole-containing sigma- and pi-conjugated compounds. J Chem Soc Dalton 22:3693–3702

    Google Scholar 

  57. Su S-J, Chiba T, Takeda T, Kido J (2008) Pyridine-containing triphenylbenzene derivatives with high electron mobility for highly efficient phosphorescent OLEDs. Adv Mater 20(11):2125–2130

    Google Scholar 

  58. Su S-J, Takahashi Y, Chiba T, Takeda T, Kido J (2009) Structure-property relationship of pyridine-containing triphenyl benzene electron-transport materials for highly efficient blue phosphorescent OLEDs. Adv Funct Mater 19(8):1260–1267

    Google Scholar 

  59. Tollin G, Kearns DR, Calvin M (1960) Electrical properties of organic solids. I. Kinetics and mechanism of conductivity of metal-free phthalocyanine. J Chem Phys 32:1013

    Google Scholar 

  60. Andre J, Simon J, Even R, Boudjema B, Guillaud G, Maitrot M (1987) Molecular semiconductors and junction formation: phthalocyanine derivatives. Synth Met 18(1):683–688

    Google Scholar 

  61. Maitrot M, Guillaud G, Boudjema B, André J, Simon J (1986) Molecular material-based junctions: formation of a Schottky contact with metallophthalocyanine thin films doped by the cosublimation method. J Appl Phys 60(7):2396–2400

    Google Scholar 

  62. Pfeiffer M, Beyer A, Fritz T, Leo K (1998) Controlled doping of phthalocyanine layers by cosublimation with acceptor molecules: a systematic Seebeck and conductivity study. Appl Phys Lett 73(22):3202–3204

    Google Scholar 

  63. Gao WY, Kahn A (2001) Controlled p-doping of zinc phthalocyanine by coevaporation with tetrafluorotetracyanoquinodimethane: a direct and inverse photoemission study. Appl Phys Lett 79(24):4040–4042

    Google Scholar 

  64. Blochwitz J, Fritz T, Pfeiffer M, Leo K, Alloway D, Lee P, Armstrong N (2001) Interface electronic structure of organic semiconductors with controlled doping levels. Org Electron 2(2):97–104

    Google Scholar 

  65. Gao ZQ, Mi BX, Xu GZ, Wan YQ, Gong ML, Cheah KW, Chen CH (2008) An organic p-type dopant with high thermal stability for an organic semiconductor. Chem Commun 1:117–119

    Google Scholar 

  66. Koech PK, Padmaperuma AB, Wang LA, Swensen JS, Polikarpov E, Darsell JT, Rainbolt JE, Gaspar DJ (2010) Synthesis and Application of 1, 3, 4, 5, 7, 8-Hexafluorotetracyanonaphthoquinodimethane (F6-TNAP): a conductivity dopant for organic light-emitting devices. Chem Mater 22(13):3926–3932

    Google Scholar 

  67. Kleemann H, Schuenemann C, Zakhidov AA, Riede M, Lussem B, Leo K (2012) Structural phase transition in pentacene caused by molecular doping and its effect on charge carrier mobility. Org Electron 13(1):58–65

    Google Scholar 

  68. Tietze ML, Burtone L, Riede M, Lussem B, Leo K (2012) Fermi level shift and doping efficiency in p-doped small molecule organic semiconductors: a photoelectron spectroscopy and theoretical study. Phys Rev B 86(3):035320

    Google Scholar 

  69. Lee JH, Lee J, Kim YH, Yun C, Lussem B, Leo K (2014) Effect of trap states on the electrical doping of organic semiconductors. Org Electron 15(1):16–21

    Google Scholar 

  70. Wellmann P, Hofmann M, Zeika O, Werner A, Birnstock J, Meerheim R, He G, Walzer K, Pfeiffer M, Leo K (2005) High-efficiency p-i-n organic light-emitting diodes with long lifetime. J Soc Inf Display 13(5):393–397

    Google Scholar 

  71. Blochwitz-Nimoth J, Langguth O, Murano S, He G, Romainczyk T, Birnstock J (2010) PIN-OLEDs for active-matrix-display use. J Soc Inf Display 18(8):596–605

    Google Scholar 

  72. Kido J, Matsumoto T (1998) Bright organic electroluminescent devices having a metal-doped electron-injecting layer. Appl Phys Lett 73(20):2866–2868

    Google Scholar 

  73. Parthasarathy G, Shen C, Kahn A, Forrest SR (2001) Lithium doping of semiconducting organic charge transport materials. J Appl Phys 89(9):4986–4992

    Google Scholar 

  74. Nollau A, Pfeiffer M, Fritz T, Leo K (2000) Controlled n-type doping of a molecular organic semiconductor: naphthalenetetracarboxylic dianhydride (NTCDA) doped with bis(ethylenedithio)-tetrathiafulvalene (BEDT-TTF). J Appl Phys 87(9):4340–4343

    Google Scholar 

  75. Tanaka S, Kanai K, Kawabe E, Iwahashi T, Nishi T, Ouchi Y, Seki K (2005) Doping effect of tetrathianaphthacene molecule in organic semiconductors on their interfacial electronic structures studied by UV photoemission spectroscopy. Jpn J Appl Phys 44(6A):3760–3763

    Google Scholar 

  76. Chan CK, Amy F, Zhang Q, Barlow S, Marder S, Kahn A (2006) N-type doping of an electron-transport material by controlled gas-phase incorporation of cobaltocene. Chem Phys Lett 431(1–3):67–71

    Google Scholar 

  77. Menke T, Wei P, Ray D, Kleemann H, Naab BD, Bao ZA, Leo K, Riede M (2012) A comparison of two air-stable molecular n-dopants for C-60. Org Electron 13(12):3319–3325

    Google Scholar 

  78. Lussem B, Tietze ML, Kleemann H, Hossbach C, Bartha JW, Zakhidov A, Leo K (2013) Doped organic transistors operating in the inversion and depletion regime. Nat Commun 4

    Google Scholar 

  79. Wang J, Liu J, Huang S, Wu X, Shi X, Chen C, Ye Z, Lu J, Su Y, He G (2013) High efficiency green phosphorescent organic light-emitting diodes with a low roll-off at high brightness. Org Electron 14(11):2854–2858

    Google Scholar 

  80. Birnstock J, Canzler T, Hofmann M, Lux A, Murano S, Wellmann P, Werner A (2008) PINOLEDs—improved structures and materials to enhance device lifetime. J Soc Inf Display 16(2):221–229

    Google Scholar 

  81. He G, Rothe C, Murano S, Werner A, Zeika O, Birnstock J (2009) White stacked OLED with 38 lm/W and 100, 000-hour lifetime at 1000 cd/m2 for display and lighting applications. J Soc Inf Display 17(2):159–165

    Google Scholar 

  82. Huang JS, Pfeiffer M, Werner A, Blochwitz J, Leo K, Liu SY (2002) Low-voltage organic electroluminescent devices using pin structures. Appl Phys Lett 80(1):139–141

    Google Scholar 

  83. Walzer K, Maennig B, Pfeiffer M, Leo K (2007) Highly efficient organic devices based on electrically doped transport layers. Chem Rev 107(4):1233–1271

    Google Scholar 

  84. Pfeiffer M, Forrest SR, Leo K, Thompson ME (2002) Electrophosphorescent p-i-n organic light-emitting devices for very-high-efficiency flat-panel displays. Adv Mater 14(22):1633–1636

    Google Scholar 

  85. Meerheim R, Walzer K, Pfeiffer M, Leo K (2006) Ultrastable and efficient red organic light emitting diodes with doped transport layers. Appl Phys Lett 89(6):061111

    Google Scholar 

  86. Tang CW, VanSlyke SA (1989) Organic electroluminescent diodes. Electroluminescence. In: Proceedings of the Fourth International Workshop, pp 356–357

    Google Scholar 

  87. Shi J, Tang C (1997) Doped organic electroluminescent devices with improved stability. Appl Phys Lett 70(13):1665–1667

    Google Scholar 

  88. Chen CH, Tang CW, Shi J, Klubek KP (2000) Recent developments in the synthesis of red dopants for Alq(3) hosted electroluminescence. Thin Solid Films 363(1–2):327–331

    Google Scholar 

  89. Hamada Y, Kanno H, Tsujioka T, Takahashi H, Usuki T (1999) Red organic light-emitting diodes using an emitting assist dopant. Appl Phys Lett 75(12):1682–1684

    Google Scholar 

  90. Liu TH, Iou CY, Wen SW, Chen CH (2003) 4-(Dicyanomethylene)-2-t-butyl-6-(1, 1, 7, 7-tetramethyljulolidyl-9-enyl)-4H-pyran doped red emitters in organic light-emitting devices. Thin Solid Films 441(1–2):223–227

    Google Scholar 

  91. Liu TH, Iou CY, Chen CH (2005) Development of highly stable organic electroluminescent devices with a doped co-host emitter system. Curr Appl Phys 5(3):218–221

    Google Scholar 

  92. Yang LF, Guan M, Nie DB, Lou B, Liu ZW, Bian ZQ, Bian J, Huang C (2007) Efficient, saturated red electroluminescent devices with modified pyran-containing emitters. Opt Mater 29(12):1672–1679

    Google Scholar 

  93. Zhang ZL, Jiang XY, Zhu WQ, Zhang BX, Xu SH (2001) A white organic light emitting diode with improved stability. J Phys D Appl Phys 34(20):3083–3087

    Google Scholar 

  94. Yao YS, Zhou QX, Wang XS, Wang Y, Zhang BW (2007) A DCM-type red-fluorescent dopant for high-performance organic electroluminescent devices. Adv Funct Mater 17(1):93–100

    Google Scholar 

  95. Okumoto K, Kanno H, Hamada Y, Takahashi H, Shibata K (2006) Green fluorescent organic light-emitting device with external quantum efficiency of nearly 10 %. Appl Phys Lett 89(16):063504

    Google Scholar 

  96. Chen CH, Tang CW, Shi J, Klubek KP (2000) Green organic electroluminescent devices. US Patent 6, 020, 078

    Google Scholar 

  97. Chen CH, Tang CW (2001) Efficient green organic light-emitting diodes with stericly hindered coumarin dopants. Appl Phys Lett 79(22):3711–3713

    Google Scholar 

  98. Lee MT, Yen CK, Yang WP, Chen HH, Liao CH, Tsai CH, Chen CH (2004) Efficient green coumarin dopants for organic light-emitting devices. Org Lett 6(8):1241–1244

    Google Scholar 

  99. Murayama R, Wakimoto T, Nakada H, Nomura M, Sato G (1993) Electroluminescent device. US Patent 5, 227, 252

    Google Scholar 

  100. Murata H, Merritt CD, Inada H, Shirota Y, Kafafi ZH (1999) Molecular organic light-emitting diodes with temperature-independent quantum efficiency and improved thermal durability. Appl Phys Lett 75(21):3252–3254

    Google Scholar 

  101. Tao YT, Balasubramaniam E, Danel A, Tomasik P (2000) Dipyrazolopyridine derivatives as bright blue electroluminescent materials. Appl Phys Lett 77(7):933–935

    Google Scholar 

  102. Shi J, Tang CW (1997) Organic electroluminescent devices with high operational stability. US Patent 5, 593, 788

    Google Scholar 

  103. Wakimoto T, Yonemoto Y, Funaki J, Tsuchida M, Murayama R, Nakada H, Matsumoto H, Yamamura S, Nomura M (1997) Stability characteristics of quinacridone and coumarin molecules as guest dopants in the organic LEDs. Synth Met 91(1–3):15–19

    Google Scholar 

  104. Wang LD, Gao YD, Wei P, Qiu Y (2004) Novel structure organic light-emitting diodes with high performance. In: SID symposium digest of technical papers 2004, vol 1, pp 703–705. Wiley Online Library

    Google Scholar 

  105. Ricks ML, Vargas JR, Klubek KP, Jarikov VV, Liao LS, Helber MJ, Begley WJ, Hatwar TK, Conley SR, Cosimbescu L (2007) Efficient, long-lifetime OLED host and dopant formulations for full-color displays. In: SID symposium digest of technical papers 2007, vol 1, pp 830–833. Wiley Online Library

    Google Scholar 

  106. Adachi C, Tsutsui T, Saito S (1990) Blue light-emitting organic electroluminescent devices. Appl Phys Lett 56(9):799–801

    Google Scholar 

  107. Shi JM, Tang CW (2002) Anthracene derivatives for stable blue-emitting organic electroluminescence devices. Appl Phys Lett 80(17):3201–3203

    Google Scholar 

  108. Shi J (2001) Method of using predoped materials for making an organic light-emitting device. EP Patent 1, 156, 536

    Google Scholar 

  109. Zhang P, Xia BH, Sun YH, Yang B, Tian WJ, Wang Y, Zhang G (2006) Electronic structures and optical properties of two anthracene derivatives. Chin Sci Bull 51(20):2444–2450

    Google Scholar 

  110. Kan Y, Wang LD, Gao YD, Duan L, Wu GS, Qiu Y (2004) Highly efficient blue electroluminescence based on a new anthracene derivative. Synth Met 141(3):245–249

    Google Scholar 

  111. Du PW, Eisenberg R (2010) Energy upconversion sensitized by a platinum(II) terpyridyl acetylide complex. Chem Sci 1(4):502–506

    Google Scholar 

  112. Tao SL, Xu SD, Zhang XH (2006) Efficient blue organic light-emitting devices based on novel anthracence derivatives with pronounced thermal stability and excellent film-forming property. Chem Phys Lett 429(4–6):622–627

    Google Scholar 

  113. Lee MT, Wu YS, Chen HH, Tsai CH, Liao CH, Chen CH (2004) Efficient blue organic electroluminescent devices based on a stable blue host material. In: SID symposium digest of technical papers 2004, vol 1, pp 710–713. Wiley Online Library

    Google Scholar 

  114. Li MT, Li WL, Su WM, Zang FX, Chu B, Xin Q, Bi DF, Li B, Yu TZ (2008) High efficiency and color saturated blue electroluminescence by using 4, 4’-bis N-(1-naphthyl)-N-phenylamino biphenyl as the thinner host and hole-transporter. Solid State Electron 52(1):121–125

    Google Scholar 

  115. Lee MT, Chen HH, Liao CH, Tsai CH, Chen CH (2004) Stable styrylamine-doped blue organic electroluminescent device based on 2-methyl-9, 10-di(2-naphthyl)anthracene. Appl Phys Lett 85(15):3301–3303

    Google Scholar 

  116. Jeon S-O, Jeon Y-M, Kim J-W, Lee C-W, Gong M-S (2007) A blue organic emitting diode derived from new styrylamine type dopant materials. Synth Met 157(13):558–563

    Google Scholar 

  117. Ho MH, Wu YS, Wen SW, Lee MT, Chen TM, Chen CH, Kwok KC, So SK, Yeung KT, Cheng YK, Gao ZQ (2006) Highly efficient deep blue organic electroluminescent device based on 1-methyl-9, 10-di(1-naphthyl)anthracene. Appl Phys Lett 89(25):252903

    Google Scholar 

  118. Ho MH, Balaganesan B, Chen CH (2012) Blue fluorescence and bipolar transport materials based on anthracene and their application in OLEDs. Isr J Chem 52(6):484–495

    Google Scholar 

  119. Kim K-S, Lee HS, Jeon Y-M, Kim J-W, Lee C-W, Gong M-S (2009) Blue light-emitting diodes from 2-(10-naphthylanthracene)-spiro [fluorene-7, 9ʹ-benzofluorene] host material. Dyes Pigm 81(3):174–179

    Google Scholar 

  120. Hosokawa C, Higashi H, Nakamura H, Kusumoto T (1995) Highly efficient blue electroluminescence from a distyrylarylene emitting layer with a new dopant. Appl Phys Lett 67(26):3853–3855

    Google Scholar 

  121. Li J, Xu Z, Zhang F, Zhao S, Song D, Zhu H, Song J, Wang Y, Xu X (2010) Electroplex emission of the blend film of PVK and DPVBi. Solid State Electron 54(4):349–352

    Google Scholar 

  122. Wen SW, Lee MT, Chen CH (2005) Recent development of blue fluorescent OLED materials and devices. J Display Technol 1(1):90–99

    Google Scholar 

  123. Zheng X, Zhu W, Wu Y, Jiang X, Sun R, Zhang Z, Xu S (2003) A white OLED based on DPVBi blue light emitting host and DCJTB red dopant. Displays 24(3):121–124

    Google Scholar 

  124. Yang S-H, Hong B-C, Huang S-F (2009) Luminescence enhancement and emission color adjustment of white organic light-emitting diodes with quantum-well-like structures. J Appl Phys 105(11):113105

    Google Scholar 

  125. Lee SJ, Park JS, Yoon KJ, Kim YI, Jin SH, Kang SK, Gal YS, Kang S, Lee JY, Kang JW, Lee SH, Park HD, Kim JJ (2008) High-efficiency deep-blue light-emitting diodes based on phenylquinoline/carbazole-based compounds. Adv Funct Mater 18(24):3922–3930

    Google Scholar 

  126. Wu YZ, Zheng XY, Zhu WQ, Sun RG, Jiang XY, Zhang ZL, Xu SH (2003) Highly efficient pure blue electroluminescence from 1, 4-bis[2-(3-N-ethylcarbazoryl)vinyl]benzene. Appl Phys Lett 83(24):5077–5079

    Google Scholar 

  127. Tyagi P, Srivastava R, Kumar A, Tuli S, Kamalasanan M (2013) Effect of doping of cesium carbonate on electron transport in Tris (8-hydroxyquinolinato) aluminum. Org Electron 14(5):1391–1395

    Google Scholar 

  128. Ali TA, Jones GW, Howard WE (2004) Dual doped high Tg white organic light emitting devices on silicon. In: SID Symposium Digest of Technical Papers 2004, vol 1, pp 1012–1015. Wiley Online Library

    Google Scholar 

  129. Zhang M, Wang F, Wei N, Zhou P, Peng K, Yu J, Wang Z, Wei B (2013) High color rending index and high-efficiency white organic light-emitting diodes based on the control of red phosphorescent dye-doped hole transport layer. Opt Express 21(101):A173–A178

    Google Scholar 

  130. Cariati E, Dragonetti C, Lucenti E, Nisic F, Righetto S, Roberto D, Tordin E (2014) An acido-triggered reversible luminescent and nonlinear optical switch based on a substituted styrylpyridine: EFISH measurements as an unusual method to reveal a protonation–deprotonation NLO contrast. Chem Commun 50(13):1608–1610

    Google Scholar 

  131. Wee KR, Han WS, Kim JE, Kim AL, Kwon S, Kang SO (2011) Asymmetric anthracene-based blue host materials: synthesis and electroluminescence properties of 9-(2-naphthyl)-10-arylanthracenes. J Mater Chem 21(4):1115–1123

    Google Scholar 

  132. Hosokawa C, Sakamoto S, Kusumoto T Organic electroluminescence device. US Patent 5, 389, 444

    Google Scholar 

  133. Jiang XY, Zhang ZL, Zheng XY, Wu YZ, Xu SH (2001) A blue organic emitting diode from anthracene derivative. Thin Solid Films 401(1–2):251–254

    Google Scholar 

  134. Kondakov DY (2009) Role of triplet-triplet annihilation in highly efficient fluorescent devices. J Soc Inf Display 17(2):137–144

    Google Scholar 

  135. Kondakov DY, Pawlik TD, Hatwar TK, Spindler JP (2009) Triplet annihilation exceeding spin statistical limit in highly efficient fluorescent organic light-emitting diodes. J Appl Phys 106(12):124510

    Google Scholar 

  136. Endo A, Sato K, Yoshimura K, Kai T, Kawada A, Miyazaki H, Adachi C (2011) Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes. Appl Phys Lett 98(8):083302

    Google Scholar 

  137. Wu SH, Aonuma M, Zhang QS, Huang SP, Nakagawa T, Kuwabara K, Adachi C (2014) High-efficiency deep-blue organic light-emitting diodes based on a thermally activated delayed fluorescence emitter. J Mater Chem C 2(3):421–424

    Google Scholar 

  138. Tanaka H, Shizu K, Nakanotani H, Adachi C (2013) Twisted intramolecular charge transfer state for long-wavelength thermally activated delayed fluorescence. Chem Mater 25(18):3766–3771

    Google Scholar 

  139. Serevicius T, Nakagawa T, Kuo MC, Cheng SH, Wong KT, Chang CH, Kwong RC, Xia S, Adachi C (2013) Enhanced electroluminescence based on thermally activated delayed fluorescence from a carbazole-triazine derivative. Phys Chem Chem Phys 15(38):15850–15855

    Google Scholar 

  140. Masui K, Nakanotani H, Adachi C (2013) Analysis of exciton annihilation in high-efficiency sky-blue organic light-emitting diodes with thermally activated delayed fluorescence. Org Electron 14(11):2721–2726

    Google Scholar 

  141. Li J, Nakagawa T, MacDonald J, Zhang QS, Nomura H, Miyazaki H, Adachi C (2013) Highly efficient organic light-emitting diode based on a hidden thermally activated delayed fluorescence channel in a heptazine derivative. Adv Mater 25(24):3319–3323

    Google Scholar 

  142. Lee J, Shizu K, Tanaka H, Nomura H, Yasuda T, Adachi C (2013) Oxadiazole- and triazole-based highly-efficient thermally activated delayed fluorescence emitters for organic light-emitting diodes. J Mater Chem C 1(30):4599–4604

    Google Scholar 

  143. Ishimatsu R, Matsunami S, Shizu K, Adachi C, Nakano K, Imato T (2013) Solvent effect on thermally activated delayed fluorescence by 1, 2, 3, 5-Tetrakis(carbazol-9-yl)-4, 6-dicyanobenzene. J Phys Chem A 117(27):5607–5612

    Google Scholar 

  144. Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C (2012) Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492(7428):234–238

    Google Scholar 

  145. Komino T, Nomura H, Koyanagi T, Adachi C (2013) Suppression of efficiency roll-off characteristics in thermally activated delayed fluorescence based organic light-emitting diodes using randomly oriented host molecules. Chem Mater 25(15):3038–3047

    Google Scholar 

  146. Yao L, Yang B, Ma Y (2014) Progress in next-generation organic electroluminescent materials: material design beyond exciton statistics. Sci China Chem 57(3):335–345

    Google Scholar 

  147. Tanaka D, Agata Y, Takeda T, Watanabe S, Kido J (2007) High luminous efficiency blue organic light-emitting devices using high triplet excited energy materials. Jpn J Appl Phys 46(4–7):L117–L119

    Google Scholar 

  148. Sasabe H, Gonmori E, Chiba T, Li Y-J, Tanaka D, Su S-J, Takeda T, Pu Y-J, Nakayama K-I, Kido J (2008) Wide-energy-gap electron-transport materials containing 3, 5-dipyridylphenyl moieties for an ultra high efficiency blue organic light-emitting device. Chem Mater 20(19):5951–5953

    Google Scholar 

  149. Chopra N, Lee J, Zheng Y, Eom SH, Xue JG, So F (2008) High efficiency blue phosphorescent organic light-emitting device. Appl Phys Lett 93(14):143307

    Google Scholar 

  150. Kwong RC, Sibley S, Dubovoy T, Baldo M, Forrest SR, Thompson ME (1999) Efficient, saturated red organic light emitting devices based on phosphorescent platinum(II) porphyrins. Chem Mater 11(12):3709–3713

    Google Scholar 

  151. Adachi C, Baldo MA, Forrest SR, Lamansky S, Thompson ME, Kwong RC (2001) High-efficiency red electrophosphorescence devices. Appl Phys Lett 78(11):1622–1624

    Google Scholar 

  152. Hay PJ (2002) Theoretical studies of the ground and excited electronic states in cyclometalated phenylpyridine Ir(III) complexes using density functional theory. J Phys Chem A 106(8):1634–1641

    Google Scholar 

  153. Tamayo AB, Alleyne BD, Djurovich PI, Lamansky S, Tsyba I, Ho NN, Bau R, Thompson ME (2003) Synthesis and characterization of facial and meridional tris-cyclometalated iridium(III) complexes. J Am Chem Soc 125(24):7377–7387

    Google Scholar 

  154. Tsuboyama A, Iwawaki H, Furugori M, Mukaide T, Kamatani J, Igawa S, Moriyama T, Miura S, Takiguchi T, Okada S, Hoshino M, Ueno K (2003) Homoleptic cyclometalated iridium complexes with highly efficient red phosphorescence and application to organic light-emitting diode. J Am Chem Soc 125(42):12971–12979

    Google Scholar 

  155. Su YJ, Huang HL, Li CL, Chien CH, Tao YT, Chou PT, Datta S, Liu RS (2003) Highly efficient red electrophosphorescent devices based on iridium isoquinoline complexes: remarkable external quantum efficiency over a wide range of current. Adv Mater 15(11):884–888

    Google Scholar 

  156. Tsuji T, Kawami S, Miyaguchi S, Naijo T, Yuki T, Matsuo S, Miyazaki H (2005) Red-phosphorescent OLEDs employing bis(8-quinolinolato)phenolato-aluminum(III) complexes as emission-layer hosts. J Soc Inf Display 13(2):117–121

    Google Scholar 

  157. Jiang CY, Yang W, Peng JB, Xiao S, Cao Y (2004) High-efficiency, saturated red-phosphorescent polymer light-emitting diodes based on conjugated and non-conjugated polymers doped with an Ir complex. Adv Mater 16(6):537–541

    Google Scholar 

  158. Yang XH, Muller DC, Neher D, Meerholz K (2006) Highly efficient polymeric electrophosphorescent diodes. Adv Mater 18(7):948–954

    Google Scholar 

  159. Tao Y, Wang Q, Yang C, Wang Q, Zhang Z, Zou T, Qin J, Ma D (2008) A simple carbazole/oxadiazole hybrid molecule: an excellent bipolar host for green and red phosphorescent OLEDs. Angew Chem 120(42):8224–8227

    Google Scholar 

  160. Yang CH, Tai CC, Sun IW (2004) Synthesis of a high-efficiency red phosphorescent emitter for organic light-emitting diodes. J Mater Chem 14(6):947–950

    Google Scholar 

  161. Okada S, Okinaka K, Iwawaki H, Furugori M, Hashimoto M, Mukaide T, Kamatani J, Igawa S, Tsuboyama A, Takiguchi T, Ueno K (2005) Substituent effects of iridium complexes for highly efficient red OLEDs. Dalton Trans 9:1583–1590

    Google Scholar 

  162. Duan JP, Sun PP, Cheng CH (2003) New iridium complexes as highly efficient orange-red emitters in organic light-emitting diodes. Adv Mater 15(3):224–228

    Google Scholar 

  163. Li CX, Sun PP, Yan LJ, Pan Y, Cheng CH (2008) Synthesis and electroluminescent properties of Ir complexes with benzo[c] acridine or 5, 6-dihydro-benzo[c]acridine ligands. Thin Solid Films 516(18):6186–6190

    Google Scholar 

  164. Xu M, Wang G, Zhou R, An Z, Zhou Q, Li W (2007) Tuning iridium (III) complexes containing 2-benzo [b] thiophen-2-yl-pyridine based ligands in the red region. Inorg Chim Acta 360(10):3149–3154

    Google Scholar 

  165. Mäkinen A, Hill I, Kafafi Z (2002) Vacuum level alignment in organic guest-host systems. J Appl Phys 92(3):1598–1603

    Google Scholar 

  166. Chang S-C, He G, Chen F-C, Guo T-F, Yang Y (2001) Degradation mechanism of phosphorescent-dye-doped polymer light-emitting diodes. Appl Phys Lett 79(13):2088–2090

    Google Scholar 

  167. Brooks J, Babayan Y, Lamansky S, Djurovich PI, Tsyba I, Bau R, Thompson ME (2002) Synthesis and characterization of phosphorescent cyclometalated platinum complexes. Inorg Chem 41(12):3055–3066

    Google Scholar 

  168. Xu ML, Li MT, Hong ZR, Li WL, An ZW, Zhou Q (2006) Highly efficient red electrophosphorescent device based on a new iridium complex with trifluoromethyl-substituted 2-benzo[b]thiophen-2-yl-pyridine ligand. Opt Mater 28(8–9):1025–1028

    Google Scholar 

  169. Chin C-L, Chen WC, Cheng K-L Organic metal complexes. US Patent 7, 799, 918

    Google Scholar 

  170. Gao J, You H, Fang JF, Ma DG, Wang LX, Jing XB, Wang FS (2005) Pure red electrophosphorescent organic light-emitting diodes based on a new iridium complex. Synth Met 155(1):168–171

    Google Scholar 

  171. Ding JQ, Gao J, Fu Q, Cheng YX, Ma DG, Wang LX (2005) Highly efficient phosphorescent bis-cyclometalated iridium complexes based on quinoline ligands. Synth Met 155(3):539–548

    Google Scholar 

  172. Thomas KRJ, Velusamy M, Lin JT, Chien CH, Tao YT, Wen YS, Hu YH, Chou PT (2005) Efficient red-emitting cyclometalated iridium(III) complexes containing lepidine-based ligands. Inorg Chem 44(16):5677–5685

    Google Scholar 

  173. Niu YH, Tung YL, Chi Y, Shu CF, Kim JH, Chen BQ, Luo JD, Carty AJ, Jen AKY (2005) Highly efficient electrophosphorescent devices with saturated red emission from a neutral osmium complex. Chem Mater 17(13):3532–3536

    Google Scholar 

  174. Tung YL, Wu PC, Liu CS, Chi Y, Yu JK, Hu YH, Chou PT, Peng SM, Lee GH, Tao Y, Carty AJ, Shu CF, Wu FI (2004) Highly efficient red phosphorescent osmium(II) complexes for OLED applications. Organometallics 23(15):3745–3748

    Google Scholar 

  175. Wu FI, Shih PI, Tseng YH, Chen GY, Chien CH, Shu CF, Tung YL, Chi Y, Jen AKY (2005) Highly efficient red-electrophosphorescent devices based on polyfluorene copolymers containing charge-transporting pendant units. J Phys Chem B 109(29):14000–14005

    Google Scholar 

  176. Wu CH, Shih PI, Shu CF, Chi Y (2008) Highly efficient red organic light-emitting devices based on a fluorene-triphenylamine host doped with an Os(II) phosphor. Appl Phys Lett 92(23):233303

    Google Scholar 

  177. Chien CH, Hsu FM, Shu CF, Chi Y (2009) Efficient red electrophosphorescence from a fluorene-based bipolar host material. Org Electron 10(5):871–876

    Google Scholar 

  178. Male NAH, Salata OV, Christou V (2002) Enhanced electroluminescent efficiency from spin-coated europium(III) organic light-emitting device. Synth Met 126(1):7–10

    Google Scholar 

  179. Tung YL, Lee SW, Chi Y, Chen LS, Shu CF, Wu FI, Carty AJ, Chou PT, Peng SM, Lee GM (2005) Organic light-emitting diodes based on charge-neutral Ru-II phosphorescent emitters. Adv Mater 17(8):1059–1064

    Google Scholar 

  180. Li F, Zhang M, Feng J, Cheng G, Wu ZJ, Ma YG, Liu SY, Sheng JC, Lee ST (2003) Red electrophosphorescence devices based on rhenium complexes. Appl Phys Lett 83(2):365–367

    Google Scholar 

  181. Zhou GJ, Wong WY, Yao B, Xie ZY, Wang LX (2007) Triphenylamine-dendronized pure red iridium phosphors with superior OLED efficiency/color purity trade-offs. Angew Chem Int Edit 46(7):1149–1151

    Google Scholar 

  182. Jiang XZ, Jen AKY, Carlson B, Dalton LR (2002) Red electrophosphorescence from osmium complexes. Appl Phys Lett 80(5):713–715

    Google Scholar 

  183. Zheng YX, Liang YJ, Zhang HJ, Lin Q, Chuan G, Wang SB (2002) Red electroluminescent device with europium 1, 1, 1-trifluoroacetylacetonate complex as emissive center. Mater Lett 53(1–2):52–56

    Google Scholar 

  184. Tung YL, Chen LS, Chi Y, Chou PT, Cheng YM, Li EY, Lee GH, Shu CF, Wu TI, Carty AJ (2006) Orange and red organic light-emitting devices employing neutral Ru(II) emitters: rational design and prospects for color tuning. Adv Funct Mater 16(12):1615–1626

    Google Scholar 

  185. Fukase A, Dao KLT, Kido J (2002) High-efficiency organic electroluminescent devices using iridium complex emitter and arylamine-containing polymer buffer layer. Polym Adv Technol 13(8):601–604

    Google Scholar 

  186. He G, Pfeiffer M, Leo K, Hofmann M, Birnstock J, Pudzich R, Salbeck J (2004) High-efficiency and low-voltage pin electrophosphorescent organic light-emitting diodes with double-emission layers. Appl Phys Lett 85(17):3911–3913

    Google Scholar 

  187. Mikami A, Koyanagi T (2009) High efficiency 200-lm/W green light emitting organic devices prepared on high-index of refraction substrate. In: SID symposium digest of technical papers 2009, vol 1, pp 907–910. Wiley Online Library

    Google Scholar 

  188. Ho MH, Balaganesan B, Chu TY, Chen TM, Chen CH (2008) A morphologically stable host material for efficient phosphorescent green and red organic light emitting devices. Thin Solid Films 517(2):943–947

    Google Scholar 

  189. Tsuzuki T, Tokito S (2009) Highly efficient and stable organic light-emitting diode using 4, 4(‘)-bis(N-carbazolyl)-9, 9(‘)-spirobifluorene as a thermally stable host material. Appl Phys Lett 94(3):03302

    Google Scholar 

  190. Kang JW, Lee DS, Park HD, Kim JW, Jeong WI, Park YS, Lee SH, Go K, Lee JS, Kim JJ (2008) A host material containing tetraphenylsilane for phosphorescent OLEDs with high efficiency and operational stability. Org Electron 9(4):452–460

    Google Scholar 

  191. Tanaka D, Sasabe H, Li Y-J, Su S-J, Takeda T, Kido J (2007) Ultra high efficiency green organic light-emitting devices. Jpn J Appl Phys 46(1–3):L10–L12

    Google Scholar 

  192. Sasabe H, Chiba T, Su S-J, Pu Y-J, K-i Nakayama, Kido J (2008) 2-Phenylpyrimidine skeleton-based electron-transport materials for extremely efficient green organic light-emitting devices. Chem Commun 44:5821–5823

    Google Scholar 

  193. Su S-J, Tanaka D, Li Y-J, Sasabe H, Takeda T, Kido J (2008) Novel four-pyridylbenzene-armed biphenyls as electron-transport materials for phosphorescent OLEDs. Org Lett 10(5):941–944

    Google Scholar 

  194. Su S-J, Gonmori E, Sasabe H, Kido J (2008) Highly efficient organic blue-and white-light-emitting devices having a carrier- and exciton-confining structure for reduced efficiency roll-off. Adv Mater 20(21):4189–4194

    Google Scholar 

  195. Helander MG, Wang ZB, Qiu J, Greiner MT, Puzzo DP, Liu ZW, Lu ZH (2011) Chlorinated indium tin oxide electrodes with high work function for organic device compatibility. Science 332(6032):944–947

    Google Scholar 

  196. Wong WY, Ho CL, Gao ZQ, Mi BX, Chen CH, Cheah KW, Lin Z (2006) Multifunctional iridium complexes based on carbazole modules as highly efficient electrophosphors. Angew Chem Int Ed 45(46):7800–7803

    Google Scholar 

  197. Ho CL, Wang Q, Lam CS, Wong WY, Ma DG, Wang LX, Gao ZQ, Chen CH, Cheah KW, Lin ZY (2009) Phosphorescence color tuning by ligand, and substituent effects of multifunctional iridium(III) cyclometalates with 9-arylcarbazole moieties. Chemistry-An Asian J 4(1):89–103

    Google Scholar 

  198. Iguchi N, Pu Y-J, Nakayama K-I, Yokoyama M, Kido J (2009) Synthesis, photoluminescence and electroluminescence properties of iridium complexes with bulky carbazole dendrons. Org Electron 10(3):465–472

    Google Scholar 

  199. Zhou GJ, Wang Q, Ho CL, Wong WY, Ma DG, Wang LX, Lin ZY (2008) Robust tris-cyclometalated iridium(III) phosphors with ligands for effective charge carrier injection/transport: synthesis, redox, photophysical, and electrophosphorescent behavior. Chemistry-an Asian J 3(10):1830–1841

    Google Scholar 

  200. Zhou GJ, Ho CL, Wong WY, Wang Q, Ma DG, Wang LX, Lin ZY, Marder TB, Beeby A (2008) Manipulating charge-transfer character with electron-withdrawing main-group moieties for the color tuning of iridium electrophosphors. Adv Funct Mater 18(3):499–511

    Google Scholar 

  201. Jung SO, Zhao Q, Park JW, Kim SO, Kim YH, Oh HY, Kim J, Kwon SK, Kang Y (2009) A green emitting iridium(III) complex with narrow emission band and its application to phosphorescence organic light-emitting diodes (OLEDs). Org Electron 10(6):1066–1073

    Google Scholar 

  202. Liu ZW, Bian ZQ, Ming L, Ding F, Shen HY, Nie DB, Huang CH (2008) Green and blue-green phosphorescent heteroleptic iridium complexes containing carbazole-functionalized beta-diketonate for non-doped organic light-emitting diodes. Org Electron 9(2):171–182

    Google Scholar 

  203. Ma B, Knowles DB, Brown CS, Murphy D, Thompson ME Organic light emitting materials and devices. US Patent 6, 687, 266

    Google Scholar 

  204. Chan SC, Chan MC, Wang Y, Che CM, Cheung KK, Zhu N (2001) Organic light-emitting materials based on bis (arylacetylide) platinum (II) complexes bearing substituted bipyridine and phenanthroline ligands: photo-and electroluminescence from 3MLCT excited states. Chem-eur J 7(19):4180–4190

    Google Scholar 

  205. Sotoyama W, Satoh T, Sawatari N, Inoue H (2005) Efficient organic light-emitting diodes with phosphorescent platinum complexes containing (NCN)-C-boolean AND-N-boolean AND 4-coordinating tridentate ligand. Appl Phys Lett 86(15):153505

    Google Scholar 

  206. Cocchi M, Virgili D, Fattori V, Rochester DL, Williams JAG (2007) N boolean AND C boolean AND N-coordinated platinum(II) complexes as phosphorescent emitters in high-performance organic light-emitting devices. Adv Funct Mater 17(2):285–289

    Google Scholar 

  207. Zhao WQ, Ran GZ, Liu ZW, Bian ZQ, Sun K, Xu WJ, Huang CH, Qin GG (2008) Combination of passivated Si anode with phosphor doped organic to realize highly efficient Si-based electroluminescence. Opt Express 16(7):5158–5163

    Google Scholar 

  208. Chang SY, Kavitha J, Li SW, Hsu CS, Chi Y, Yeh YS, Chou PT, Lee GH, Carty AJ, Tao YT, Chien CH (2006) Platinum(II) complexes with pyridyl azolate-based chelates: synthesis, structural characterization, and tuning of photo- and electrophosphorescence. Inorg Chem 45(1):137–146

    Google Scholar 

  209. Adachi C, Kwong RC, Djurovich P, Adamovich V, Baldo MA, Thompson ME, Forrest SR (2001) Endothermic energy transfer: a mechanism for generating very efficient high-energy phosphorescent emission in organic materials. Appl Phys Lett 79(13):2082–2084

    Google Scholar 

  210. Holmes RJ, D’Andrade BW, Forrest SR, Ren X, Li J, Thompson ME (2003) Efficient, deep-blue organic electrophosphorescence by guest charge trapping. Appl Phys Lett 83(18):3818–3820

    Google Scholar 

  211. Tsuboi T, Murayama H, Yeh S-J, Wu M-F, Chen C-T (2008) Photoluminescence characteristics of blue phosphorescent Ir3+-compounds FIrpic and FIrN4 doped in mCP and SimCP. Opt Mater 31(2):366–371

    Google Scholar 

  212. Yeh SJ, Wu MF, Chen CT, Song YH, Chi Y, Ho MH, Hsu SF, Chen CH (2005) New dopant and host materials for blue-light-emitting phosphorescent organic electroluminescent devices. Adv Mater 17(3):285–289

    Google Scholar 

  213. Chiu YC, Hung JY, Chi Y, Chen CC, Chang CH, Wu CC, Cheng YM, Yu YC, Lee GH, Chou PT (2009) En route to high external quantum efficiency (similar to 12 %), organic true-blue-light-emitting diodes employing novel design of iridium (III) phosphors. Adv Mater 21(21):2221–2225

    Google Scholar 

  214. Ragni R, Plummer EA, Brunner K, Hofstraat JW, Babudri F, Farinola GM, Naso F, De Cola L (2006) Blue emitting iridium complexes: synthesis, photophysics and phosphorescent devices. J Mater Chem 16(12):1161–1170

    Google Scholar 

  215. Kim SH, Jang J, Lee SJ, Lee JY (2008) Deep blue phosphorescent organic light-emitting diodes using a Si based wide bandgap host and an Ir dopant with electron withdrawing substituents. Thin Solid Films 517(2):722–726

    Google Scholar 

  216. Jeon SO, Jang SE, Son HS, Lee JY (2011) External quantum efficiency above 20 % in deep blue phosphorescent organic light-emitting diodes. Adv Mater 23(12):1436–1441

    Google Scholar 

  217. Seo HJ, Yoo KM, Song M, Park JS, Jin SH, Kim YI, Kim JJ (2010) Deep-blue phosphorescent iridium complexes with picolinic acid N-oxide as the ancillary ligand for high efficiency organic light-emitting diodes. Org Electron 11(4):564–572

    Google Scholar 

  218. Lee SJ, Park KM, Yang K, Kang Y (2009) Blue phosphorescent Ir(III) complex with high color purity: fac-Tris(2’, 6’-difluoro-2, 3’-bipyridinato-N, C-4’)iridium(III). Inorg Chem 48(3):1030–1037

    Google Scholar 

  219. Lo SC, Shipley CP, Bera RN, Harding RE, Cowley AR, Burn PL, Samuel IDW (2006) Blue phosphorescence from iridium(III) complexes at room temperature. Chem Mater 18(21):5119–5129

    Google Scholar 

  220. Holmes RJ, Forrest SR, Sajoto T, Tamayo A, Djurovich PI, Thompson ME, Brooks J, Tung YJ, D’Andrade BW, Weaver MS, Kwong RC, Brown JJ (2005) Saturated deep blue organic electrophosphorescence using a fluorine-free emitter. Appl Phys Lett 87(24):243507

    Google Scholar 

  221. Chang CF, Cheng YM, Chi Y, Chiu YC, Lin CC, Lee GH, Chou PT, Chen CC, Chang CH, Wu CC (2008) Highly efficient blue-emitting iridium(III) carbene complexes and phosphorescent OLEDs. Angew Chem Int Edit 47(24):4542–4545

    Google Scholar 

  222. Takizawa S, Echizen H, Nishida J, Tsuzuki T, Tokito S, Yamashita Y (2006) Finely-tuned blue-phosphorescent iridium complexes based on 2-phenylpyridine derivatives and application to polymer organic light-emitting device. Chem Lett 35(7):748–749

    Google Scholar 

  223. Yook KS, Jeon SO, Joo CW, Lee JY (2009) High efficiency deep blue phosphorescent organic light-emitting diodes. Org Electron 10(1):170–173

    Google Scholar 

  224. Chopra N, Lee J, Zheng Y, Eom SH, Xue JE, So F (2009) Effect of the charge balance on high-efficiency blue-phosphorescent organic light-emitting diodes. ACS Appl Mater Inter 1(6):1169–1172

    Google Scholar 

  225. D’Andrade BW, Brooks J, Adamovich V, Thompson ME, Forrest SR (2002) White light emission using triplet excimers in electrophosphorescent organic light-emitting devices. Adv Mater 14(15):1032–1036

    Google Scholar 

  226. Yang XH, Wang ZX, Madakuni S, Li J, Jabbour GE (2008) Efficient blue- and white-emitting electrophosphorescent devices based on platinum(II) [1, 3-difluoro-4, 6-di(2-pyridinyl)benzene] chloride. Adv Mater 20(12):2405–2409

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gufeng He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

He, G. (2015). Organic Semiconductor Electroluminescent Materials. In: Li, Y. (eds) Organic Optoelectronic Materials. Lecture Notes in Chemistry, vol 91. Springer, Cham. https://doi.org/10.1007/978-3-319-16862-3_6

Download citation

Publish with us

Policies and ethics