Skip to main content

Conjugated Polymer Photovoltaic Materials

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Chemistry ((LNC,volume 91))

Abstract

During the past few decades, conjugated polymers with various molecular structures have been explored for applications in polymer solar cells (PSCs). In this chapter, an overview of conjugated polymer photovoltaic materials is given to provide insights for molecular design and fine-tuning of high-performance photovoltaic polymers. First, we briefly summarize and provide design considerations of conjugated polymer photovoltaic materials. Second, representative photovoltaic polymers are introduced. Third, representative conjugated polymer acceptor materials are briefly introduced and discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Li XH, Choy WCH, Huo LJ, Xie FX, Sha WEI, Ding BF, Guo X, Li YF, Hou JH, You JB, Yang Y (2012) Dual plasmonic nanostructures for high performance inverted organic solar cells. Adv Mater 24:3046–3052

    Google Scholar 

  2. Chang C-Y, Zuo L, Yip H-L, Li Y, Li C-Z, Hsu C-S, Cheng Y-J, Chen H, Jen AKY (2013) A versatile fluoro-containing low-bandgap polymer for efficient semitransparent and tandem polymer solar cells. Adv Funct Mater 23:5084–5090

    Google Scholar 

  3. Liu S, Zhang K, Lu J, Zhang J, Yip H-L, Huang F, Cao Y (2013) High-efficiency polymer solar cells via the incorporation of an amino-functionalized conjugated metallopolymer as a cathode interlayer. J Am Chem Soc 135:15326–15329

    Google Scholar 

  4. Yang TB, Wang M, Duan CH, Hu XW, Huang L, Peng JB, Huang F, Gong X (2012) Inverted polymer solar cells with 8.4 % efficiency by conjugated polyelectrolyte. Energy Environ Sci 5:8208–8214

    Google Scholar 

  5. Tan Z, Li L, Wang F, Xu Q, Li S, Sun G, Tu X, Hou X, Hou J, Li Y (2014) Solution-processed rhenium oxide: A versatile anode buffer layer for high performance polymer solar cells with enhanced light harvest. Adv Energy Mater 4. doi:10.1002/aenm.201300884

  6. Duan CH, Zhang K, Guan X, Zhong CM, Xie HM, Huang F, Chen JW, Peng JB, Cao Y (2013) Conjugated zwitterionic polyelectrolyte-based interface modification materials for high performance polymer optoelectronic devices. Chem Sci 4:1298–1307

    Google Scholar 

  7. He ZC, Zhong CM, Huang X, Wong WY, Wu HB, Chen LW, Su SJ, Cao Y (2011) Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells. Adv Mater 23:4636–4643

    Google Scholar 

  8. He ZC, Zhong CM, Su SJ, Xu M, Wu HB, Cao Y (2012) Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nat Photonics 6:591–595

    Google Scholar 

  9. Dou LT, You JB, Yang J, Chen CC, He YJ, Murase S, Moriarty T, Emery K, Li G, Yang Y (2012) Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer. Nat Photonics 6:180–185

    Google Scholar 

  10. Dou LT, Chang WH, Gao J, Chen CC, You JB, Yang Y (2013) A selenium-substituted low-bandgap polymer with versatile photovoltaic applications. Adv Mater 25:825–831

    Google Scholar 

  11. Dou LT, Gao J, Richard E, You JB, Chen CC, Cha KC, He YJ, Li G, Yang Y (2012) Systematic investigation of benzodithiophene- and diketopyrrolopyrrole-based low-bandgap polymers designed for single junction and tandem polymer solar cells. J Am Chem Soc 134:10071–10079

    Google Scholar 

  12. Liao S-H, Jhuo H-J, Cheng Y-S, Chen S-A (2013) Fullerene derivative-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high performance. Adv Mater 25:4766–4771

    Google Scholar 

  13. You J, Dou L, Yoshimura K, Kato T, Ohya K, Moriarty T, Emery K, Chen C-C, Gao J, Li G, Yang Y (2013) A polymer tandem solar cell with 10.6 % power conversion efficiency. Nat Commun 4:1446

    Google Scholar 

  14. Yu G, Gao J, Hummelen JC, Wudl F, Heeger AJ (1995) Polymer photovoltaic cells—enhanced efficiencies via a network of internal donor–acceptor heterojunctions. Science 270:1789–1791

    Google Scholar 

  15. Halls JJM, Walsh CA, Greenham NC, Marseglia EA, Friend RH, Moratti SC, Holmes AB (1995) Efficient photodiodes from interpenetrating polymer networks. Nature 376:498–500

    Google Scholar 

  16. Li YF, Zou YP (2008) Conjugated polymer photovoltaic materials with broad absorption band and high charge carrier mobility. Adv Mater 20:2952–2958

    Google Scholar 

  17. Cheng YJ, Yang SH, Hsu CS (2009) Synthesis of conjugated polymers for organic solar cell applications. Chem Rev 109:5868–5923

    Google Scholar 

  18. Chen J, Cao Y (2009) Development of novel conjugated donor polymers for high-efficiency bulk-heterojunction photovoltaic devices. Acc Chem Res 42:1709–1718

    Google Scholar 

  19. Beaujuge PM, Fréchet JMJ (2011) Molecular design and ordering effects in π-functional materials for transistor and solar cell applications. J Am Chem Soc 133:20009–20029

    Google Scholar 

  20. He F, Yu LP (2011) How far can polymer solar cells go? In need of a synergistic approach. J Phys Chem Lett 2:3102–3113

    Google Scholar 

  21. Li YF (2012) Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption. Acc Chem Res 45:723–733

    Google Scholar 

  22. Ye L, Zhang SQ, Huo LJ, Zhang MJ, Hou JH (2014) Molecular design toward highly efficient photovoltaic polymers based on two-Dimensional conjugated benzodithiophene. Acc Chem Res 47:1595–1603

    Google Scholar 

  23. Zhou HX, Yang LQ, You W (2012) Rational design of high performance conjugated polymers for organic solar cells. Macromolecules 45:607–632

    Google Scholar 

  24. Henson ZB, Mullen K, Bazan GC (2012) Design strategies for organic semiconductors beyond the molecular formula. Nat Chem 4:699–704

    Google Scholar 

  25. Son HJ, Carsten B, Jung IH, Yu LP (2012) Overcoming efficiency challenges in organic solar cells: rational development of conjugated polymers. Energy Environ Sci 5:8158–8170

    Google Scholar 

  26. Facchetti A (2011) pi-conjugated polymers for organic electronics and photovoltaic cell applications. Chem Mater 23:733–758

    Google Scholar 

  27. Spanggaard H, Krebs FC (2004) A brief history of the development of organic and polymeric photovoltaics. Sol Energy Mater Sol C 83:125–146

    Google Scholar 

  28. Liang YY, Yu LP (2010) A new class of semiconducting polymers for bulk heterojunction solar cells with exceptionally high performance. Acc Chem Res 43:1227–1236

    Google Scholar 

  29. Zhan XW, Zhu DB (2010) Conjugated polymers for high-efficiency organic photovoltaics. Polym Chem 1:409–419

    Google Scholar 

  30. Helgesen M, Sondergaard R, Krebs FC (2010) Advanced materials and processes for polymer solar cell devices. J Mater Chem 20:36–60

    Google Scholar 

  31. Scharber MC, Wuhlbacher D, Koppe M, Denk P, Waldauf C, Heeger AJ, Brabec CL (2006) Design rules for donors in bulk-heterojunction solar cells—towards 10 % energy-conversion efficiency. Adv Mater 18:789–794

    Google Scholar 

  32. Liu F, Gu Y, Shen X, Ferdous S, Wang H-W, Russell TP (2013) Characterization of the morphology of solution-processed bulk heterojunction organic photovoltaics. Prog Polym Sci 38:1990–2052

    Google Scholar 

  33. Ye L, Jing Y, Guo X, Sun H, Zhang S, Zhang M, Huo L, Hou J (2013) Remove the residual additives toward enhanced efficiency with higher reproducibility in polymer solar cells. J Phys Chem C 117:14920–14928

    Google Scholar 

  34. Bijleveld JC, Zoombelt AP, Mathijssen SGJ, Wienk MM, Turbiez M, de Leeuw DM, Janssen RAJ (2009) Poly(diketopyrrolopyrrole-terthiophene) for ambipolar logic and photovoltaics. J Am Chem Soc 131:16616–16617

    Google Scholar 

  35. Ye L, Zhang S, Ma W, Fan B, Guo X, Huang Y, Ade H, Hou J (2012) From binary to ternary solvent: morphology fine-tuning of D/A blends in PDPP3T-based polymer solar cells. Adv Mater 24:6335–6341

    Google Scholar 

  36. Wessling RA (1985) The polymerization of xylylene bisdialkyl sulfonium salts. J Polym Sci Polym Symp 72:55–66

    Google Scholar 

  37. Gilch HG, Wheelwright WL (1966) Polymerization of α-halogenated p-xylenes with base. J Polym Sci A-1: Polym Chem 4:1337–1349

    Google Scholar 

  38. Hou J, Fan B, Huo L, He C, Yang C, Li Y (2006) Poly(alkylthio-p-phenylenevinylene): synthesis and electroluminescent and photovoltaic properties. J Polym Sci A: Polym Chem 44:1279–1290

    Google Scholar 

  39. Namazi H, Assadpour A, Pourabbas B, Entezami A (2001) Polycondensation of bis(cyanoacetate) and a,10bdihydrobenzofuro[2,3-b]benzofuran-2,9-dicarbaldehyde via knoevenagel reaction: synthesis of donor–acceptor polymers containing shoulder-to-shoulder main chains. J Appl Polym Sci 81:505–511

    Google Scholar 

  40. Shaheen SE, Brabec CJ, Sariciftci NS, Padinger F, Fromherz T, Hummelen JC (2001) 2.5 % efficient organic plastic solar cells. Appl Phys Lett 78:841–843

    Google Scholar 

  41. Brabec CJ, Shaheen SE, Winder C, Sariciftci NS, Denk P (2002) Effect of LiF/metal electrodes on the performance of plastic solar cells. Appl Phys Lett 80:1288–1290

    Google Scholar 

  42. Zhou QM, Zheng LP, Sun DK, Deng XY, Yu G, Cao Y (2003) Efficient polymer photovoltaic devices based on blend of MEH-PPV and C-60 derivatives. Synth Met 135:825–826

    Google Scholar 

  43. Wienk MM, Kroon JM, Verhees WJH, Knol J, Hummelen JC, van Hal PA, Janssen RAJ (2003) Efficient methano[70]fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angew Chem Int Ed 42:3371–3375

    Google Scholar 

  44. Tajima K, Suzuki Y, Hashimoto K (2008) Polymer photovoltaic devices using fully regioregular poly[(2-methoxy-5-(3′,7′-dimethyloctyloxy))-1,4-phenylenevinylene]. J Phys Chem C 112:8507–8510

    Google Scholar 

  45. Mikroyannidis JA, Kabanakis AN, Balraju P, Sharma GD (2010) Enhanced performance of bulk heterojunction solar cells using novel alternating phenylenevinylene copolymers of low band gap with cyanovinylene 4-nitrophenyls. Macromolecules 43:5544–5553

    Google Scholar 

  46. Hou JH, Tan Z, He YJ, Yang CH, Li YF (2006) Branched poly(thienylene vinylene)s with absorption spectra covering the whole visible region. Macromolecules 39:4657–4662

    Google Scholar 

  47. Huo LJ, Chen TL, Zhou Y, Hou JH, Chen HY, Yang Y, Li YF (2009) Improvement of photoluminescent and photovoltaic properties of poly(thienylene vinylene) by carboxylate substitution. Macromolecules 42:4377–4380

    Google Scholar 

  48. He Y, Zhou Y, Zhao G, Min J, Guo X, Zhang B, Zhang M, Zhang J, Li Y, Zhang F, Inganäs O (2010) Poly(4,8-bis(2-ethylhexyloxy)benzo[1,2-b:4,5-b′]dithiophene vinylene): synthesis, optical and photovoltaic properties. J Polym Sci A: Polym Chem 48:1822–1829

    Google Scholar 

  49. Sato M, Morii H (1991) Configurational feature of electrochemically-prepared poly(3-dodecylthiophene). Polym Commun 32:42–44

    Google Scholar 

  50. McCullough RD (1998) The chemistry of conducting polythiophenes. Adv Mater 10:93–116

    Google Scholar 

  51. Sugimoto R, Takeda S, Gu HB, Yoshino K (1986) Preparation of soluble polythiophene derivatives utilizing transition metal halides as catalysts and their property. Chem Express 1:635–638

    Google Scholar 

  52. Pomerantz M, Tseng JJ, Zhu H, Sproull SJ, Reynolds JR, Uitz R, Arnott HJ, Haider MI (1991) Processable polymers and copolymers of 3-alkylthiophenes and their blends. Synth Met 41:825–830

    Google Scholar 

  53. Mccullough RD, Lowe RD (1992) Enhanced electrical-conductivity in regioselectively synthesized poly(3-alkylthiophenes). J Chem Soc Chem Comm 1:70–72

    Google Scholar 

  54. Chen TA, Rieke RD (1993) Polyalkylthiophenes with the smallest bandgap and the highest intrinsic conductivity. Synth Met 60:175–177

    Google Scholar 

  55. Iraqi A, Barker GW (1998) Synthesis and characterisation of telechelic regioregular head-to-tail poly(3-alkylthiophenes). J Mater Chem 8:25–29

    Google Scholar 

  56. Guillerez S, Bidan G (1998) New convenient synthesis of highly regioregular poly(3-octylthiophene) based on the Suzuki coupling reaction. Synth Met 93:123–126

    Google Scholar 

  57. Brabec CJ (2004) Organic photovoltaics: technology and market. Sol Energy Mat Sol C 83:273–292

    Google Scholar 

  58. Dang MT, Hirsch L, Wantz G (2011) P3HT:PCBM, best seller in polymer photovoltaic research. Adv Mater 23:3597–3602

    Google Scholar 

  59. Dang MT, Hirsch L, Wantz G, Wuest JD (2013) Controlling the morphology and performance of bulk heterojunctions in solar cells. Lessons learned from the benchmark poly(3-hexylthiophene):[6, 6]-phenyl-C61-butyric acid methyl ester system. Chem Rev 113:3734–3765

    Google Scholar 

  60. Padinger F, Rittberger RS, Sariciftci NS (2003) Effects of postproduction treatment on plastic solar cells. Adv Funct Mater 13:85–88

    Google Scholar 

  61. Li G, Shrotriya V, Huang JS, Yao Y, Moriarty T, Emery K, Yang Y (2005) High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat Mater 4:864–868

    Google Scholar 

  62. Ma WL, Yang CY, Gong X, Lee K, Heeger AJ (2005) Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv Funct Mater 15:1617–1622

    Google Scholar 

  63. He YJ, Chen HY, Hou JH, Li YF (2010) Indene-C-60 bisadduct: a new acceptor for high-performance polymer solar cells. J Am Chem Soc 132:1377–1382

    Google Scholar 

  64. Zhao G, He Y, Li Y (2010) 6.5 % efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-C60 bisadduct by device optimization. Adv Mater 22:4355–4358

    Google Scholar 

  65. Guo X, Cui CH, Zhang MJ, Huo LJ, Huang Y, Hou JH, Li Y (2012) High efficiency polymer solar cells based on poly(3-hexylthiophene)/indene-C-70 bisadduct with solvent additive. Energy Environ Sci 5:7943–7949

    Google Scholar 

  66. Li G, Yao Y, Yang H, Shrotriya V, Yang G, Yang Y (2007) ”Solvent annealing” effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes. Adv Funct Mater 17:1636–1644

    Google Scholar 

  67. Yao Y, Hou JH, Xu Z, Li G, Yang Y (2008) Effect of solvent mixture on the nanoscale phase separation in polymer solar cells. Adv Funct Mater 18:1783–1789

    Google Scholar 

  68. Nguyen LH, Hoppe H, Erb T, Günes S, Gobsch G, Sariciftci NS (2007) Effects of annealing on the nanomorphology and performance of poly(alkylthiophene): fullerene bulk-heterojunction solar cells. Adv Funct Mater 17:1071–1078

    Google Scholar 

  69. Wu PT, Xin H, Kim FS, Ren GQ, Jenekhe SA (2009) Regioregular poly(3-pentylthiophene): synthesis, self-assembly of nanowires, high-mobility field-effect transistors, and efficient photovoltaic cells. Macromolecules 42:8817–8826

    Google Scholar 

  70. Xin H, Kim FS, Jenekhe SA (2008) Highly efficient solar cells based on poly(3-butylthiophene) nanowires. J Am Chem Soc 130:5424–5425

    Google Scholar 

  71. Gadisa A, Oosterbaan WD, Vandewal K, Bolsée J-C, Bertho S, D’Haen J, Lutsen L, Vanderzande D, Manca JV (2009) Effect of alkyl side-chain length on photovoltaic properties of poly(3-alkylthiophene)/PCBM bulk heterojunctions. Adv Funct Mater 19:3300–3306

    Google Scholar 

  72. Sun Y, Cui C, Wang H, Li Y (2012) High-efficiency polymer solar cells based on poly(3-pentylthiophene) with indene-C70 bisadduct as an acceptor. Adv Energy Mater 2:966–969

    Google Scholar 

  73. Hou JH, Tan ZA, Yan Y, He YJ, Yang CH, Li YF (2006) Synthesis and photovoltaic properties of two-dimensional conjugated polythiophenes with bi(thienylenevinylene) side chains. J Am Chem Soc 128:4911–4916

    Google Scholar 

  74. Hou JH, Chen TL, Zhang SQ, Huo LJ, Sista S, Yang Y (2009) An easy and effective method to modulate molecular energy level of poly(3-alkylthiophene) for high-V-oc polymer solar cells. Macromolecules 42:9217–9219

    Google Scholar 

  75. Zhang MJ, Guo X, Yang Y, Zhang J, Zhang ZG, Li YF (2011) Downwards tuning the HOMO level of polythiophene by carboxylate substitution for high open-circuit-voltage polymer solar cells. Polym Chem 2:2900–2906

    Google Scholar 

  76. Svensson M, Zhang F, Veenstra SC, Verhees WJH, Hummelen JC, Kroon JM, Inganäs O, Andersson MR (2003) High-performance polymer solar cells of an alternating polyfluorene copolymer and a fullerene derivative. Adv Mater 15:988–991

    Google Scholar 

  77. Chen MH, Hou J, Hong Z, Yang G, Sista S, Chen LM, Yang Y (2009) Efficient polymer solar cells with thin active layers based on alternating polyfluorene copolymer/fullerene bulk heterojunctions. Adv Mater 21:4238–4242

    Google Scholar 

  78. Mühlbacher D, Scharber M, Morana M, Zhu Z, Waller D, Gaudiana R, Brabec C (2006) High photovoltaic performance of a low-bandgap polymer. Adv Mater 18:2884–2889

    Google Scholar 

  79. Peet J, Kim JY, Coates NE, Ma WL, Moses D, Heeger AJ, Bazan GC (2007) Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat Mater 6:497–500

    Google Scholar 

  80. Blouin N, Michaud A, Leclerc M (2007) A low-bandgap poly(2,7-Carbazole) derivative for use in high-performance solar cells. Adv Mater 19:2295–2300

    Google Scholar 

  81. Park SH, Roy A, Beaupre S, Cho S, Coates N, Moon JS, Moses D, Leclerc M, Lee K, Heeger AJ (2009) Bulk heterojunction solar cells with internal quantum efficiency approaching 100 %. Nat Photonics 3:297–302

    Google Scholar 

  82. Beaupre S, Leclerc M (2013) PCDTBT: en route for low cost plastic solar cells. J Mater Chem A 1:11097–11105

    Google Scholar 

  83. Qin RP, Li WW, Li CH, Du C, Veit C, Schleiermacher HF, Andersson M, Bo ZS, Liu ZP, Inganas O, Wuerfel U, Zhang FL (2009) A planar copolymer for high efficiency polymer solar cells. J Am Chem Soc 131:14612–14613

    Google Scholar 

  84. Wong WY, Wang XZ, He Z, Djurisic AB, Yip CT, Cheung KY, Wang H, Mak CSK, Chan WK (2007) Metallated conjugated polymers as a new avenue towards high-efficiency polymer solar cells. Nat Mater 6:521–527

    Google Scholar 

  85. Wang EG, Wang L, Lan LF, Luo C, Zhuang WL, Peng JB, Cao Y (2008) High-performance polymer heterojunction solar cells of a polysilafluorene derivative. Appl Phys Lett 92:033307

    Google Scholar 

  86. Song J, Du C, Li C, Bo Z (2011) Silole-containing polymers for high-efficiency polymer solar cells. J Polym Sci A: Polym Chem 49:4267–4274

    Google Scholar 

  87. Hou JH, Chen HY, Zhang SQ, Li G, Yang Y (2008) Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole. J Am Chem Soc 130:16144–16145

    Google Scholar 

  88. Chen HY, Hou JH, Hayden AE, Yang H, Houk KN, Yang Y (2010) Silicon atom substitution enhances interchain packing in a thiophene-based polymer system. Adv Mater 22:371–375

    Google Scholar 

  89. Scharber MC, Koppe M, Gao J, Cordella F, Loi MA, Denk P, Morana M, Egelhaaf HJ, Forberich K, Dennler G, Gaudiana R, Waller D, Zhu ZG, Shi XB, Brabec CJ (2010) Influence of the bridging atom on the performance of a low-bandgap bulk heterojunction solar cell. Adv Mater 22:367–370

    Google Scholar 

  90. Morana M, Azimi H, Dennler G, Egelhaaf H-J, Scharber M, Forberich K, Hauch J, Gaudiana R, Waller D, Zhu Z, Hingerl K, van Bavel SS, Loos J, Brabec CJ (2010) Nanomorphology and charge generation in bulk heterojunctions based on low-bandgap dithiophene polymers with different bridging atoms. Adv Funct Mater 20:1180–1188

    Google Scholar 

  91. Zhang M, Guo X, Li Y (2011) Synthesis and characterization of a copolymer based on thiazolothiazole and dithienosilole for polymer solar cells. Adv Energy Mater 1:557–560

    Google Scholar 

  92. Cui C, Fan X, Zhang M, Zhang J, Min J, Li Y (2011) A D-A copolymer of dithienosilole and a new acceptor unit of naphtho[2,3-c]thiophene-4,9-dione for efficient polymer solar cells. Chem Commun 47:11345–11347

    Google Scholar 

  93. Guo X, Zhou N, Lou SJ, Hennek JW, Ponce Ortiz R, Butler MR, Boudreault P-LT, Strzalka J, Morin P-O, Leclerc M, López Navarrete JT, Ratner MA, Chen LX, Chang RPH, Facchetti A, Marks TJ (2012) Bithiopheneimide–dithienosilole/dithienogermole copolymers for efficient solar cells: information from structure–property–device performance correlations and comparison to thieno[3,4-c]pyrrole-4,6-dione analogues. J Am Chem Soc 134:18427–18439

    Google Scholar 

  94. Chu T-Y, Lu J, Beaupré S, Zhang Y, Pouliot J-R, Wakim S, Zhou J, Leclerc M, Li Z, Ding J, Tao Y (2011) Bulk heterojunction solar cells using thieno[3,4-c]pyrrole-4,6-dione and dithieno[3,2-b:2′,3′-d]silole copolymer with a power conversion efficiency of 7.3 %. J Am Chem Soc 133:4250–4253

    Google Scholar 

  95. Wienk MM, Turbiez M, Gilot J, Janssen RAJ (2008) Narrow-bandgap diketo-pyrrolo-pyrrole polymer solar cells: the effect of processing on the performance. Adv Mater 20:2556–2560

    Google Scholar 

  96. Huo LJ, Hou JH, Chen HY, Zhang SQ, Jiang Y, Chen TL, Yang Y (2009) Bandgap and molecular level control of the low-bandgap polymers based on 3,6-dithiophen-2-yl-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione toward highly efficient polymer solar cells. Macromolecules 42:6564–6571

    Google Scholar 

  97. Li W, Furlan A, Hendriks KH, Wienk MM, Janssen RAJ (2013) Efficient tandem and triple-junction polymer solar cells. J Am Chem Soc 135:5529–5532

    Google Scholar 

  98. Bronstein H, Chen ZY, Ashraf RS, Zhang WM, Du JP, Durrant JR, Tuladhar PS, Song K, Watkins SE, Geerts Y, Wienk MM, Janssen RAJ, Anthopoulos T, Sirringhaus H, Heeney M, McCulloch I (2011) Thieno[3,2-b]thiophene-diketopyrrolopyrrole-containing polymers for high-performance organic field-effect transistors and organic photovoltaic devices. J Am Chem Soc 133:3272–3275

    Google Scholar 

  99. Bronstein H, Collado-Fregoso E, Hadipour A, Soon YW, Huang Z, Dimitrov SD, Ashraf RS, Rand BP, Watkins SE, Tuladhar PS, Meager I, Durrant JR, McCulloch I (2013) Thieno[3,2-b]thiophene-diketopyrrolopyrrole containing polymers for inverted solar cells devices with high short circuit currents. Adv Funct Mater 23:5647–5654

    Google Scholar 

  100. Li W, Hendriks KH, Roelofs WSC, Kim Y, Wienk MM, Janssen RAJ (2013) Efficient small bandgap polymer solar cells with high fill factors for 300 nm thick films. Adv Mater 25:3182–3186

    Google Scholar 

  101. Bijleveld JC, Gevaerts VS, Di Nuzzo D, Turbiez M, Mathijssen SGJ, de Leeuw DM, Wienk MM, Janssen RAJ (2010) Efficient solar cells based on an easily accessible diketopyrrolopyrrole polymer. Adv Mater 22:E242–E246

    Google Scholar 

  102. Yiu AT, Beaujuge PM, Lee OP, Woo CH, Toney MF, Frechet JMJ (2012) Side-chain tunability of furan-containing low-band-gap polymers provides control of structural order in efficient solar cells. J Am Chem Soc 134:2180–2185

    Google Scholar 

  103. Woo CH, Beaujuge PM, Holcombe TW, Lee OP, Frechet JMJ (2010) Incorporation of furan into low band-gap polymers for efficient solar cells. J Am Chem Soc 132:15547–15549

    Google Scholar 

  104. Li WW, Hendriks KH, Furlan A, Roelofs WSC, Wienk MM, Janssen RAJ (2013) Universal correlation between fibril width and quantum efficiency in diketopyrrolopyrrole-based polymer solar cells. J Am Chem Soc 135:18942–18948

    Google Scholar 

  105. Mcculloch I, Ashraf RS, Biniek L, Bronstein H, Combe C, Donaghey JE, James DI, Nielsen CB, Schroeder BC, Zhang WM (2012) Design of semiconducting indacenodithiophene polymers for high performance transistors and solar cells. Acc Chem Res 45:714–722

    Google Scholar 

  106. Chen CP, Chan SH, Chao TC, Ting C, Ko BT (2008) Low-bandgap poly(thiophene-phenylene-thiophene) derivatives with broaden absorption spectra for use in high-performance bulk-heterojunction polymer solar cells. J Am Chem Soc 130:12828–12833

    Google Scholar 

  107. Yu CY, Chen CP, Chan SH, Hwang GW, Ting C (2009) Thiophene/phenylene/thiophene-based low-bandgap conjugated polymers for efficient near-infrared photovoltaic applications. Chem Mater 21:3262–3269

    Google Scholar 

  108. Chen YC, Yu CY, Fan YL, Hung LI, Chen CP, Ting C (2010) Low-bandgap conjugated polymer for high efficient photovoltaic applications. Chem Commun 46:6503–6505

    Google Scholar 

  109. Zhang Y, Zou JY, Yip HL, Chen KS, Zeigler DF, Sun Y, Jen AKY (2011) Indacenodithiophene and quinoxaline-based conjugated polymers for highly efficient polymer solar cells. Chem Mater 23:2289–2291

    Google Scholar 

  110. Zhang Y, Chien SC, Chen KS, Yip HL, Sun Y, Davies JA, Chen FC, Jen AKY (2011) Increased open circuit voltage in fluorinated benzothiadiazole-based alternating conjugated polymers. Chem Commun 47:11026–11028

    Google Scholar 

  111. Xu YX, Chueh CC, Yip HL, Ding FZ, Li YX, Li CZ, Li XS, Chen WC, Jen AKY (2012) Improved charge transport and absorption coefficient in indacenodithieno[3,2-b]thiophene-based ladder-type polymer leading to highly efficient polymer solar cells. Adv Mater 24:6356–6361

    Google Scholar 

  112. Wang M, Hu XW, Liu LQ, Duan CH, Liu P, Ying L, Huang F, Cao Y (2013) Design and synthesis of copolymers of indacenodithiophene and naphtho[1,2-c:5,6-c]bis(1,2,5-thiadiazole) for polymer solar cells. Macromolecules 46:3950–3958

    Google Scholar 

  113. Zhang MJ, Guo X, Wang XC, Wang HQ, Li YF (2011) Synthesis and photovoltaic properties of D-A copolymers based on alkyl-substituted indacenodithiophene donor unit. Chem Mater 23:4264–4270

    Google Scholar 

  114. Intemann JJ, Yao K, Yip HL, Xu YX, Li YX, Liang PW, Ding FZ, Li XS, Jen AKY (2013) Molecular weight effect on the absorption, charge carrier mobility, and photovoltaic performance of an indacenodiselenophene-based ladder-type polymer. Chem Mater 25:3188–3195

    Google Scholar 

  115. Guo X, Zhang MJ, Tan JH, Zhang SQ, Huo LJ, Hu WP, Li YF, Hou JH (2012) Influence of D/A ratio on photovoltaic performance of a highly efficient polymer solar cell system. Adv Mater 24:6536–6541

    Google Scholar 

  116. Huo LJ, Hou JH (2011) Benzo[1,2-b:4,5-b′]dithiophene-based conjugated polymers: band gap and energy level control and their application in polymer solar cells. Polym Chem 2:2453–2461

    Google Scholar 

  117. Hou JH, Park MH, Zhang SQ, Yao Y, Chen LM, Li JH, Yang Y (2008) Bandgap and molecular energy level control of conjugated polymer photovoltaic materials based on benzo[1,2-b : 4,5-b′]dithiophene. Macromolecules 41:6012–6018

    Google Scholar 

  118. Liang YY, Wu Y, Feng DQ, Tsai ST, Son HJ, Li G, Yu LP (2009) Development of new semiconducting polymers for high performance solar cells. J Am Chem Soc 131:56–57

    Google Scholar 

  119. Liang YY, Feng DQ, Wu Y, Tsai ST, Li G, Ray C, Yu LP (2009) Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties. J Am Chem Soc 131:7792–7799

    Google Scholar 

  120. Liang YY, Xu Z, Xia JB, Tsai ST, Wu Y, Li G, Ray C, Yu LP (2010) For the bright future-bulk heterojunction polymer solar cells with power conversion efficiency of 7.4 %. Adv Mater 22:E135–E138

    Google Scholar 

  121. Hou JH, Chen HY, Zhang SQ, Chen RI, Yang Y, Wu Y, Li G (2009) Synthesis of a low band gap polymer and its application in highly efficient polymer solar cells. J Am Chem Soc 131:15586–15587

    Google Scholar 

  122. Chen HY, Hou JH, Zhang SQ, Liang YY, Yang GW, Yang Y, Yu LP, Wu Y, Li G (2009) Polymer solar cells with enhanced open-circuit voltage and efficiency. Nat Photonics 3:649–653

    Google Scholar 

  123. Huang Y, Huo LJ, Zhang SQ, Guo X, Han CC, Li YF, Hou JH (2011) Sulfonyl: a new application of electron-withdrawing substituent in highly efficient photovoltaic polymer. Chem Commun 47:8904–8906

    Google Scholar 

  124. Zhou HX, Yang LQ, Stuart AC, Price SC, Liu SB, You W (2011) Development of fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7 % efficiency. Angew Chem Int Ed 50:2995–2998

    Google Scholar 

  125. Wang N, Chen Z, Wei W, Jiang ZH (2013) Fluorinated benzothiadiazole-based conjugated polymers for high-performance polymer solar cells without any processing additives or post-treatments. J Am Chem Soc 135:17060–17068

    Google Scholar 

  126. Price SC, Stuart AC, Yang LQ, Zhou HX, You W (2011) Fluorine substituted conjugated polymer of medium band gap yields 7 % efficiency in polymer-fullerene solar cells. J Am Chem Soc 133:4625–4631

    Google Scholar 

  127. Li K, Li Z, Feng K, Xu X, Wang L, Peng Q (2013) Development of large band-gap conjugated copolymers for efficient regular single and tandem organic solar cells. J Am Chem Soc 135:13549–13557

    Google Scholar 

  128. Wang XC, Jiang P, Chen Y, Luo H, Zhang ZG, Wang HQ, Li XY, Yu G, Li YF (2013) Thieno[3,2-b]thiophene-bridged D-pi-A polymer semiconductor based on benzo[1,2-b:4,5-b′]dithiophene and benzoxadiazole. Macromolecules 46:4805–4812

    Google Scholar 

  129. Chen HC, Chen YH, Liu CC, Chien YC, Chou SW, Chou PT (2012) Prominent short-circuit currents of fluorinated quinoxaline-based copolymer solar cells with a power conversion efficiency of 8.0 %. Chem Mater 24:4766–4772

    Google Scholar 

  130. Huo LJ, Hou JH, Zhang SQ, Chen HY, Yang Y (2010) A polybenzo[1,2-b:4,5-b′]dithiophene derivative with deep HOMO level and its application in high-performance polymer solar cells. Angew Chem Int Ed 49:1500–1503

    Google Scholar 

  131. Huo LJ, Zhang SQ, Guo X, Xu F, Li YF, Hou JH (2011) Replacing alkoxy groups with alkylthienyl groups: a feasible approach to improve the properties of photovoltaic polymers. Angew Chem Int Ed 50:9697–9702

    Google Scholar 

  132. Huang Y, Guo X, Liu F, Huo LJ, Chen YN, Russell TP, Han CC, Li YF, Hou JH (2012) Improving the ordering and photovoltaic properties by extending pi-conjugated area of electron-donating units in polymers with D-A structure. Adv Mater 24:3383–3389

    Google Scholar 

  133. Duan RM, Ye L, Guo X, Huang Y, Wang P, Zhang SQ, Zhang JP, Huo LJ, Hou JH (2012) Application of two-dimensional conjugated benzo[1,2-b:4,5-b′]dithiophene in quinoxaline-based photovoltaic polymers. Macromolecules 45:3032–3038

    Google Scholar 

  134. Guo X, Zhang MJ, Huo LJ, Xu F, Wu Y, Hou JH (2012) Design, synthesis and photovoltaic properties of a new D-pi-A polymer with extended pi-bridge units. J Mater Chem 22:21024–21031

    Google Scholar 

  135. Zhang SQ, Ye L, Wang Q, Li ZJ, Guo X, Huo LJ, Fan HL, Hou JH (2013) Enhanced photovoltaic performance of diketopyrrolopyrrole (DPP)-based polymers with extended pi conjugation. J Phys Chem C 117:9550–9557

    Google Scholar 

  136. Qian DP, Ye L, Zhang MJ, Liang YR, Li LJ, Huang Y, Guo X, Zhang SQ, Tan ZA, Hou JH (2012) Design, application, and morphology study of a new photovoltaic polymer with strong aggregation in solution state. Macromolecules 45:9611–9617

    Google Scholar 

  137. Wang M, Hu XW, Liu P, Li W, Gong X, Huang F, Cao Y (2011) Donor acceptor conjugated polymer based on naphtho[1,2-c:5,6-c]bis[1, 2, 5]thiadiazole for high-performance polymer solar cells. J Am Chem Soc 133:9638–9641

    Google Scholar 

  138. Huo LJ, Guo X, Zhang SQ, Li YF, Hou JH (2011) PBDTTTZ: a broad band gap conjugated polymer with high photovoltaic performance in polymer solar cells. Macromolecules 44:4035–4037

    Google Scholar 

  139. Zhang MJ, Gu Y, Guo X, Liu F, Zhang SQ, Huo LJ, Russell TP, Hou JH (2013) Efficient polymer solar cells based on benzothiadiazole and alkylphenyl substituted benzodithiophene with a power conversion efficiency over 8 %. Adv Mater 25:4944–4949

    Google Scholar 

  140. Zhang M, Guo X, Zhang S, Hou J (2014) Synergistic effect of fluorination on molecular energy level modulation in highly efficient photovoltaic polymers. Adv Mater 26:1118–1123

    Google Scholar 

  141. Huo LJ, Ye L, Wu Y, Li ZJ, Guo X, Zhang MJ, Zhang SQ, Hou JH (2012) Conjugated and nonconjugated substitution effect on photovoltaic properties of benzodifuran-based photovoltaic polymers. Macromolecules 45:6923–6929

    Google Scholar 

  142. Wu Y, Li ZJ, Guo X, Fan HL, Huo LJ, Hou JH (2012) Synthesis and application of dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′] dithiophene in conjugated polymer. J Mater Chem 22:21362–21365

    Google Scholar 

  143. Wu Y, Li ZJ, Ma W, Huang Y, Huo LJ, Guo X, Zhang MJ, Ade H, Hou JH (2013) PDT-S-T: a new polymer with optimized molecular conformation for controlled aggregation and pi-pi stacking and its application in efficient photovoltaic devices. Adv Mater 25:3449–3455

    Google Scholar 

  144. Son HJ, Lu LY, Chen W, Xu T, Zheng TY, Carsten B, Strzalka J, Darling SB, Chen LX, Yu LP (2013) Synthesis and photovoltaic effect in dithieno[2,3-d:2′,3′-d′]Benzo[1,2-b:4,5-b′]dithiophene-based conjugated polymers. Adv Mater 25:838–843

    Google Scholar 

  145. Pron A, Berrouard P, Leclerc M (2013) Thieno[3,4-c]pyrrole-4,6-dione-based polymers for optoelectronic applications. Macromol Chem Physic 214:7–16

    Google Scholar 

  146. Zou YP, Najari A, Berrouard P, Beaupre S, Aich BR, Tao Y, Leclerc M (2010) A thieno[3,4-c]pyrrole-4,6-dione-based copolymer for efficient solar cells. J Am Chem Soc 132:5330–5331

    Google Scholar 

  147. Zhang Y, Hau SK, Yip HL, Sun Y, Acton O, Jen AKY (2010) Efficient polymer solar cells based on the copolymers of benzodithiophene and thienopyrroledione. Chem Mater 22:2696–2698

    Google Scholar 

  148. Zhang GB, Fu YY, Zhang Q, Xie ZY (2010) Benzo[1,2-b:4,5-b′]dithiophene-dioxopyrrolothiophen copolymers for high performance solar cells. Chem Commun 46:4997–4999

    Google Scholar 

  149. Piliego C, Holcombe TW, Douglas JD, Woo CH, Beaujuge PM, Frechet JMJ (2010) Synthetic control of structural order in N-alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells. J Am Chem Soc 132:7595–7597

    Google Scholar 

  150. Aich BR, Lu JP, Beaupre S, Leclerc M, Tao Y (2012) Control of the active layer nanomorphology by using co-additives towards high-performance bulk heterojunction solar cells. Org Electron 13:1736–1741

    Google Scholar 

  151. Cabanetos C, El Labban A, Bartelt JA, Douglas JD, Mateker WR, Frechet JMJ, McGehee MD, Beaujuge PM (2013) Linear side chains in benzo[1,2-b:4,5-b′]dithiophene-thieno[3,4-c]pyrrole-4,6-dione polymers direct self-assembly and solar cell performance. J Am Chem Soc 135:4656–4659

    Google Scholar 

  152. Amb CM, Chen S, Graham KR, Subbiah J, Small CE, So F, Reynolds JR (2011) Dithienogermole as a fused electron donor in bulk heterojunction solar cells. J Am Chem Soc 133:10062–10065

    Google Scholar 

  153. Small CE, Chen S, Subbiah J, Amb CM, Tsang SW, Lai TH, Reynolds JR, So F (2012) High-efficiency inverted dithienogermole-thienopyrrolodione-based polymer solar cells. Nat Photonics 6:115–120

    Google Scholar 

  154. Zhong HL, Li Z, Deledalle F, Fregoso EC, Shahid M, Fei ZP, Nielsen CB, Yaacobi-Gross N, Rossbauer S, Anthopoulos TD, Durrant JR, Heeney M (2013) Fused dithienogermolodithiophene low band gap polymers for high-performance organic solar cells without processing additives. J Am Chem Soc 135:2040–2043

    Google Scholar 

  155. Su MS, Kuo CY, Yuan MC, Jeng US, Su CJ, Wei KH (2011) Improving device efficiency of polymer/fullerene bulk heterojunction solar cells through enhanced crystallinity and reduced grain boundaries induced by solvent additives. Adv Mater 23:3315–3319

    Google Scholar 

  156. Guo XG, Ortiz RP, Zheng Y, Kim MG, Zhang SM, Hu Y, Lu G, Facchetti A, Marks TJ (2011) Thieno[3,4-c]pyrrole-4,6-dione-based polymer semiconductors: toward high-performance, air-stable organic thin-film transistors. J Am Chem Soc 133:13685–13697

    Google Scholar 

  157. Guo XG, Zhou NJ, Lou SJ, Smith J, Tice DB, Hennek JW, Ortiz RP, Navarrete JTL, Li SY, Strzalka J, Chen LX, Chang RPH, Facchetti A, Marks TJ (2013) Polymer solar cells with enhanced fill factors. Nat Photonics 7:825–833

    Google Scholar 

  158. Wang EG, Hou LT, Wang ZQ, Hellstrom S, Zhang FL, Inganas O, Andersson MR (2010) An easily synthesized blue polymer for high-performance polymer solar cells. Adv Mater 22:5240–5244

    Google Scholar 

  159. Wang EG, Ma ZF, Zhang Z, Vandewal K, Henriksson P, Inganas O, Zhang FL, Andersson MR (2011) An easily accessible isoindigo-based polymer for high-performance polymer solar cells. J Am Chem Soc 133:14244–14247

    Google Scholar 

  160. Qian DP, Ma W, Li ZJ, Guo X, Zhang SQ, Ye L, Ade H, Tan ZA, Hou JH (2013) Molecular design toward efficient polymer solar cells with high polymer content. J Am Chem Soc 135:8464–8467

    Google Scholar 

  161. Deng Y, Liu J, Wang J, Liu L, Li W, Tian H, Zhang X, Xie Z, Geng Y, Wang F (2014) Dithienocarbazole and isoindigo based amorphous low bandgap conjugated polymers for efficient polymer solar cells. Adv Mater 26:471–476

    Google Scholar 

  162. Osaka I, Kakara T, Takemura N, Koganezawa T, Takimiya K (2013) Naphthodithiophene-naphthobisthiadiazole copolymers for solar cells: alkylation drives the polymer backbone flat and promotes efficiency. J Am Chem Soc 135:8834–8837

    Google Scholar 

  163. Hendriks KH, Heintges GHL, Gevaerts VS, Wienk MM, Janssen RAJ (2013) High-molecular-weight regular alternating diketopyrrolopyrrole-based terpolymers for efficient organic solar cells. Angew Chem Int Ed 52:8341–8344

    Google Scholar 

  164. Dou L, Chen C-C, Yoshimura K, Ohya K, Chang W-H, Gao J, Liu Y, Richard E, Yang Y (2013) Synthesis of 5H-dithieno[3,2-b:2′,3′-d]pyran as an electron-rich building block for donor–acceptor type low-bandgap polymers. Macromolecules 46:3384–3390

    Google Scholar 

  165. Ye L, Zhang SQ, Qian DP, Wang Q, Hou JH (2013) Application of Bis-PCBM in polymer solar cells with improved voltage. J Phys Chem C 117:25360–25366

    Google Scholar 

  166. Zhang X, Lu Z, Ye L, Zhan C, Hou J, Zhang S, Jiang B, Zhao Y, Huang J, Zhang S, Liu Y, Shi Q, Liu Y, Yao J (2013) A potential perylene diimide dimer-based acceptor material for highly efficient solution-processed non-fullerene organic solar cells with 4.03 % efficiency. Adv Mater 25:5791–5797

    Google Scholar 

  167. Jiang W, Ye L, Li XG, Xiao CY, Tan F, Zhao WC, Hou JH, Wang ZH (2014) Bay-linked perylene bisimides as promising non-fullerene acceptors for organic solar cells. Chem Commun 50:1024–1026

    Google Scholar 

  168. Sonar P, Lim JPF, Chan KL (2011) Organic non-fullerene acceptors for organic photovoltaics. Energy Environ Sci 4:1558–1574

    Google Scholar 

  169. Eftaiha AF, Sun JP, Hill IG, Welch GC (2014) Recent advances of non-fullerene, small molecular acceptors for solution processed bulk heterojunction solar cells. J Mater Chem A 2:1201–1213

    Google Scholar 

  170. Facchetti A (2013) Polymer donor-polymer acceptor (all-polymer) solar cells. Mater Today 16:123–132

    Google Scholar 

  171. Zhan XW, Tan ZA, Domercq B, An ZS, Zhang X, Barlow S, Li YF, Zhu DB, Kippelen B, Marder SR (2007) A high-mobility electron-transport polymer with broad absorption and its use in field-effect transistors and all-polymer solar cells. J Am Chem Soc 129:7246–7247

    Google Scholar 

  172. Zhan XW, Tan ZA, Zhou EJ, Li YF, Misra R, Grant A, Domercq B, Zhang XH, An ZS, Zhang X, Barlow S, Kippelen B, Marder SR (2009) Copolymers of perylene diimide with dithienothiophene and dithienopyrrole as electron-transport materials for all-polymer solar cells and field-effect transistors. J Mater Chem 19:5794–5803

    Google Scholar 

  173. Tan ZA, Zhou EJ, Zhan XW, Wang X, Li YF, Barlow S, Marder SR (2008) Efficient all-polymer solar cells based on blend of tris(thienylenevinylene)-substituted polythiophene and poly[perylene diimide-alt-bis(dithienothiophene)]. Appl Phys Lett 93:073309

    Google Scholar 

  174. Zhou EJ, Cong JZ, Wei QS, Tajima K, Yang CH, Hashimoto K (2011) All-polymer solar cells from perylene diimide based copolymers: material design and phase separation control. Angew Chem Int Ed 50:2799–2803

    Google Scholar 

  175. Zhou Y, Yan QF, Zheng YQ, Wang JY, Zhao DH, Pei J (2013) New polymer acceptors for organic solar cells: the effect of regio-regularity and device configuration. J Mater Chem A 1:6609–6613

    Google Scholar 

  176. McNeill CR, Abrusci A, Zaumseil J, Wilson R, McKiernan MJ, Burroughes JH, Halls JJM, Greenham NC, Friend RH (2007) Dual electron donor/electron acceptor character of a conjugated polymer in efficient photovoltaic diodes. Appl Phys Lett 90:193506

    Google Scholar 

  177. McNeill CR, Abrusci A, Hwang I, Ruderer MA, Muller-Buschbaum P, Greenham NC (2009) Photophysics and photocurrent generation in polythiophene/polyfluorene copolymer blends. Adv Funct Mater 19:3103–3111

    Google Scholar 

  178. Tang YQ, McNeill CR (2013) All-polymer solar cells utilizing low band gap polymers as donor and acceptor. J Polym Sci B: Polym Phys 51:403–409

    Google Scholar 

  179. Earmme T, Hwang YJ, Murari NM, Subramaniyan S, Jenekhe SA (2013) All-polymer solar cells with 3.3 % efficiency based on naphthalene diimide-selenophene copolymer acceptor. J Am Chem Soc 135:14960–14963

    Google Scholar 

  180. Cheng P, Ye L, Zhao X, Hou J, Li Y, Zhan X (2014) Binary additives synergistically boost the efficiency of all-polymer solar cells up to 3.45 %. Energy Environ Sci. doi:10.1039/C3EE43041C

  181. Zhou E, Cong JZ, Hashimoto K, Tajima K (2013) Control of miscibility and aggregation via the material design and coating process for high-performance polymer blend solar cells. Adv Mater 25:6991–6996

    Google Scholar 

  182. Mori D, Benten H, Okada I, Ohkita H, Ito S (2013) Low-bandgap donor/acceptor polymer blend solar cells with efficiency exceeding 4 %. Adv Energy Mater. doi:10.1002/aenm.201301006

  183. Chiechi RC, Hummelen JC (2012) Polymer electronics, quo vadis? Acs Macro Lett 1:1180–1183

    Google Scholar 

  184. Koster LJA, Shaheen SE, Hummelen JC (2012) Pathways to a new efficiency regime for organic solar cells. Adv Energy Mater 2:1246–1253

    Google Scholar 

  185. Kanal IY, Owens SG, Bechtel JS, Hutchison GR (2013) Efficient computational screening of organic polymer photovoltaics. J Phys Chem Lett 4:1613–1623

    Google Scholar 

  186. Liu C, Wang K, Hu XW, Yang YL, Hsu CH, Zhang W, Xiao S, Gong X, Cao Y (2013) Molecular weight effect on the efficiency of polymer solar cells. ACS Appl Mater Inter 5:12163–12167

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhui Hou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ye, L., Hou, J. (2015). Conjugated Polymer Photovoltaic Materials. In: Li, Y. (eds) Organic Optoelectronic Materials. Lecture Notes in Chemistry, vol 91. Springer, Cham. https://doi.org/10.1007/978-3-319-16862-3_5

Download citation

Publish with us

Policies and ethics