Skip to main content

Anti-inflammatory Diets to Reduce Gestational Problems Caused by Obesity, Metabolic Syndrome, and Diabetes

  • Chapter
Metabolic Syndrome and Complications of Pregnancy

Abstract

The master switch that turns on the expression of inflammatory gene products is the nuclear factor kappaB (NF-κB). Its activating factor includes oxidative stress from excess calories, hormones derived from arachidonic acid, saturated fatty acids, advanced glycosylated end products (AGE), and inflammatory cytokines from nearby cells. The core message from this molecular world is that the innate immune system is under considerable dietary control that can pound either on the pro-inflammatory or anti-inflammatory balance. The balance between the two arms of the scale allows to “burn out” damages and “repair.” In acute conditions, both arms are part of defense-and-healing process. Although virtually every chronic disease can be connected with unbalanced cellular inflammation, the three that are most germane to pregnancy are obesity, metabolic syndrome, and diabetes. Reducing the potential problems derived by “inflammation” during pregnancy is best accomplished by first identifying high-risk populations with existing metabolic dysfunction caused by diet-induced inflammation, and then working with such populations to reduce cellular inflammation by the use of an anti-inflammatory diet. There are various time points at which such dietary interventions might be contemplated. Peri-conception – The best time to prepare for the dramatic hormonal changes caused by pregnancy is lower cellular inflammation prior to conception. This is true for both parents. The rise in IVF treatments is an indication of the increasing difficulty of successful conception. Pregnancy – It is known that the maternal diet can have significant effect on fetal programming with dramatic influence on the future health of the child (Yajnik, Diabetes Care 33(5):1146–1148, 2010; Ravelli et al., Am J Clin Nutr 70(5):811–816, 1999; Hanbauer et al., Cardiovasc Psychiatry Neurol 2009:867041, 2009; Alvheim et al., Lipids 9(1):59–69, 2014; Alvheim et al., Obesity 20(10):1984–1994, 2012; Muhlhausler and Ailhaud, Curr Opin Endocrinol Diabetes Obes 20(1):56–61, 2013; Skinner, Mol Cell Endocrinol S1872–8057, 2014; Schneider et al. Horm Behav 66(1):104–119, 2014). The more closely a mother follows an anti-inflammatory diet, the better the future outcome for the child. Postnatal – After birth, the brain is the most rapidly growing organ in the body of the child. Reducing cellular inflammation throughout the newborn’s body with an anti-inflammatory diet is perhaps the best insurance policy for long-term metabolic health of the child. This is especially true as it is estimated that one-third of the children born in the United States after the year 2000 will develop diabetes (Olshansky et al., N Engl J Med 352(11):1138–1145, 2005). Anti-inflammatory diets are ultimately based on new breakthroughs in molecular biology that support the ability of such a dietary strategy to reduce inflammation, increase resolution, and alter gene expression. The more quickly such diets are implemented in high-risk populations, the less the likelihood of long-term negative metabolic consequences for the offspring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Serhan CN, Ward PA, Gilroy DW, Samir S. Fundamentals of inflammation. Cambridge, UK: Cambridge University Press; 2010.

    Book  Google Scholar 

  2. Baker RG, Hayden MS, Ghosh S. NF-κB, inflammation, and metabolic disease. Cell Metab. 2011;13(1):11–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Mariotto S, Suzuki Y, Persichini T, Colasanti M, Suzuki H, Cantoni O. Cross-talk between NO and arachidonic acid in inflammation. Curr Med Chem. 2007;14(18):1940–4.

    Article  CAS  PubMed  Google Scholar 

  4. Calder PC. Dietary modification of inflammation with lipids. Proc Nutr Soc. 2002;61(3):345–58.

    Article  CAS  PubMed  Google Scholar 

  5. Sears B. The mediterranean zone. New York: Random House; 2014.

    Google Scholar 

  6. Spite M, Claria J, Serhan CN. Resolvins, specialized proresolving lipid mediators, and their potential roles in metabolic diseases. Cell Metab. 2014;19(1):21–36.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Sears B. The anti-inflammation zone. New York: Regan Books; 2005.

    Google Scholar 

  8. Ndumele CE, Pradhan AD, Ridker PM. Interrelationships between inflammation, C-reactive protein, and insulin resistance. J Cardiometab Syndr. 2006;1(3):190–6.

    Article  PubMed  Google Scholar 

  9. Bastard JP, Maachi M, Lagathu C, Kim MJ, Caron M, Vidal H, et al. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur Cytokine Netw. 2006;17(1):4–12.

    CAS  PubMed  Google Scholar 

  10. Mather SJ, Chianelli M. Radiolabelled cytokines. Q J Nucl Med. 1996;40(3):290–300.

    CAS  PubMed  Google Scholar 

  11. Rifai N, Ridker PM. Inflammatory markers and coronary heart disease. Curr Opin Lipidol. 2002;13(4):383–9.

    Article  CAS  PubMed  Google Scholar 

  12. Tall AR. C-reactive protein reassessed. N Engl J Med. 2004;350:1450–2.

    Article  CAS  PubMed  Google Scholar 

  13. Sears B. Toxic fat. Knoxville: Thomas Nelson; 2008.

    Google Scholar 

  14. Lionetti L, Mollica MP, Lombardi A, Cavaliere G, Gifuni G, Barletta A. From chronic overnutrition to insulin resistance: the role of fat-storing capacity and inflammation. Nutr Metab Cardiovasc Dis. 2009;19(2):146–52.

    Article  CAS  PubMed  Google Scholar 

  15. Hotamisligil GS. Inflammation and metabolic disorders. Nature. 2006;444(7121):860–7.

    Article  CAS  PubMed  Google Scholar 

  16. De Fina LF, Vega GL, Leonard D, Grundy SM. Fasting glucose, obesity, and metabolic syndrome as predictors of type 2 diabetes: the Cooper Center Longitudinal Study. J Investig Med. 2012;60(8):1164–8.

    Google Scholar 

  17. Bierhaus A, Stern DM, Nawroth PP. RAGE in inflammation: a new therapeutic target? Curr Opin Investig Drugs. 2006;7(11):985–91.

    CAS  PubMed  Google Scholar 

  18. Wei D, Li J, Shen M, Jia W, Chen N, Chen T, Su D, et al. Cellular production of n-3 PUFAs and reduction of n-6-to-n-3 ratios in the pancreatic beta-cells and islets enhance insulin secretion and confer protection against cytokine-induced cell death. Diabetes. 2010;59(2):471–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Sears B. The Zone. New York: Regan Books; 1995.

    Google Scholar 

  20. Brenner RR. Nutritional and hormonal factors influencing desaturation of essential fatty acids. Prog Lipid Res. 1981;20:41–7.

    Article  CAS  PubMed  Google Scholar 

  21. Huang S, Rutkowsky JM, Snodgrass RG, Ono-Moore KD, Schneider DA, Newman JW, et al. Saturated fatty acids activate TLR-mediated proinflammatory signaling pathways. J Lipid Res. 2012;53(9):2002–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Lee JY, Plakidas A, Lee WH, Heikkinen A, Chanmugam P, Bray G, et al. Differential modulation of Toll-like receptors by fatty acids: preferential inhibition by n-3 polyunsaturated fatty acids. J Lipid Res. 2003;44(3):479–86.

    Article  CAS  PubMed  Google Scholar 

  23. Scapagnini G, Vasto S, Sonya V, Abraham NG, Nader AG, Caruso C, et al. Modulation of Nrf2/ARE pathway by food polyphenols: a nutritional neuroprotective strategy for cognitive and neurodegenerative disorders. Mol Neurobiol. 2011;44(2):192–201.

    Article  CAS  PubMed  Google Scholar 

  24. Rahman I, Biswas SK, Kirkham PA. Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharmacol. 2006;72(11):1439–52.

    Article  CAS  PubMed  Google Scholar 

  25. Ebbeling CB, Swain JF, Feldman HA, Wong WW, Hachey DL, Garcia-Lago E, et al. Effects of dietary composition on energy expenditure during weight-loss maintenance. JAMA. 2012;307(24):2627–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D. Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell. 2008;135(1):61–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Markovic TP, Campbell LV, Balasubramanian S, Jenkins AB, Fleury AC, Simons LA, et al. Beneficial effect on average lipid levels from energy restriction and fat loss in obese individuals with or without type 2 diabetes. Diabetes Care. 1998;21:695–700.

    Article  CAS  PubMed  Google Scholar 

  28. Ludwig DS, Majzoub JA, Al-Zahrani A, Dallal GE, Blanco I, Roberts SB. High glycemic index foods, overeating, and obesity. Pediatrics. 1999;103(3):E26.

    Article  CAS  PubMed  Google Scholar 

  29. Agus MS, Swain JF, Larson CL, Eckert EA, Ludwig DS. Dietary composition and physiologic adaptations to energy restriction. Am J Clin Nutr. 2000;71(4):901–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Pereira MA, Swain J, Goldfine AB, Rifai N, Ludwig DS. Effects of a low-glycemic load diet on resting energy expenditure and heart disease risk factors during weight loss. JAMA. 2004;292(20):2482–90.

    Article  CAS  PubMed  Google Scholar 

  31. Joslin Diabetes Reseach Center. www.joslin.org/docs/Nutrition_Guideline_Graded.pdf. EPIC and Diabetes. 2007

  32. Hamdy O, Carver C. The Why WAIT program: improving clinical outcomes through weight management in type 2 diabetes. Curr Diab Rep. 2008;8(5):413–20.

    Article  PubMed  Google Scholar 

  33. Hamdy O, Colberg SR. The diabetes breakthrough. Don Mills: Harlequin; 2014.

    Google Scholar 

  34. Layman DK, Boileau RA, Erickson DJ, Painter JE, Shiue H, Sather C, Christou DD. A reduced ratio of dietary carbohydrate to protein improves body composition and blood lipid profiles during weight loss in adult women. J Nutr. 2003;133:411–7.

    CAS  PubMed  Google Scholar 

  35. Layman DK, Shiue H, Sather C, Erickson DJ, Baum J. Increased dietary protein modifies glucose and insulin homeostasis in adult women during weight loss. J Nutr. 2003;133(2):405–10.

    CAS  PubMed  Google Scholar 

  36. Johnston CS, Tjonn SL, Swan PD, White A, Hutchins H, Sears B. Ketogenic low-carbohydrate diets have no metabolic advantage over nonketogenic low-carbohydrate diets. Am J Clin Nutr. 2006;83(5):1055–61.

    CAS  PubMed  Google Scholar 

  37. Gannon MC, Nuttall FQ. Control of blood glucose in type 2 diabetes without weight loss by modification of diet composition. Nutr Metab. 2006;3:16.

    Article  Google Scholar 

  38. Lasker DA, Evans EM, Layman DK. Moderate carbohydrate, moderate protein weight loss diet reduces cardiovascular disease risk compared to high carbohydrate, low protein diet in obese adults: a randomized clinical trial. Nutr Metab. 2008;5:30.

    Article  Google Scholar 

  39. Layman DK, Evans EM, Erickson D, Seyler J, Weber J, Bagshaw D, et al. A moderate-protein diet produces sustained weight loss and long-term changes in body composition and blood lipids in obese adults. J Nutr. 2009;139(6):514–21.

    Article  CAS  PubMed  Google Scholar 

  40. Ohnishi H, Saito Y. Eicosapentaenoic acid (EPA) reduces cardiovascular events: relationship with the EPA/arachidonic acid ratio. J Atheroscler Thromb. 2013;20(12):861–77.

    Article  PubMed  Google Scholar 

  41. Harris WS, Pottala JV, Varvel SA, Borowski JJ, Ward JN, McConnell JP. Erythrocyte omega-3 fatty acids increase and linoleic acid decreases with age: observations from 160,000 patients. Prostaglandins Leukot Essent Fatty Acids. 2013;88(4):257–63.

    Article  CAS  PubMed  Google Scholar 

  42. Yokoyama M, Origasa H, Matsuzaki M, Matsuzawa Y, Saito Y, Ishikawa Y, et al. Effects of eicosapentaenoic acid on major coronary events in hypercholesterolaemic patients (JELIS): a randomised open-label, blinded endpoint analysis. Lancet. 2007;369(9567):1090–8.

    Article  CAS  PubMed  Google Scholar 

  43. Yee LD, Lester JL, Cole RM, Richardson JR, Hsu JC, Li Y, et al. Omega-3 fatty acid supplements in women at high risk of breast cancer have dose-dependent effects on breast adipose tissue fatty acid composition. Am J Clin Nutr. 2010;91(5):1185–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. McLaughlin T, Reaven G, Abbasi F, Lamendola C, Saad M, Waters D, et al. Is there a simple way to identify insulin-resistant individuals at increased risk of cardiovascular disease? Am J Cardiol. 2005;96(3):399–404.

    Article  CAS  PubMed  Google Scholar 

  45. Salazar MR, Carbajal HA, Espeche WG, Leiva Sisnieguez CE, March CE, Balbin E, et al. Comparison of the abilities of the plasma triglyceride/high-density lipoprotein cholesterol ratio and the metabolic syndrome to identify insulin resistance. Diab Vasc Dis Res. 2013;10(4):346–52.

    Article  PubMed  Google Scholar 

  46. Levitan EB, Liu S, Stampfer MJ, Cook NR, Rexrode KM, Ridker PM, et al. HbA1c measured in stored erythrocytes and mortality rate among middle-aged and older women. Diabetologia. 2008;51(2):267–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Carson AP, Fox CS, McGuire DK, Levitan EB, Laclaustra M, Mann DM, et al. Low hemoglobin A1c and risk of all-cause mortality among US adults without diabetes. Circ Cardiovasc Qual Outcomes. 2010;3(6):661–7.

    Article  PubMed  Google Scholar 

  48. Ashley JT, Ward JS, Schafer MW, Stapleton HM, Velinsky DJ. Evaluating daily exposure to polychlorinated biphenyls and polybrominated diphenyl ethers in fish oil supplements. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2010;27(8):1177–85.

    Article  CAS  PubMed  Google Scholar 

  49. Arsenescu V, Arsenescu RI, King V, Swanson H, Cassis LA. Polychlorinated biphenyl-77 induces adipocyte differentiation and proinflammatory adipokines and promotes obesity and atherosclerosis. Environ Health Perspect. 2008;116(6):761–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Yajnik CS. Fetal programming of diabetes: still so much to learn! Diabetes Care. 2010;33(5):1146–8.

    Article  PubMed Central  PubMed  Google Scholar 

  51. Ravelli AC, van Der Meulen JH, Osmond C, Barker DJ, Bleker OP. Obesity at the age of 50 y in men and women exposed to famine prenatally. Am J Clin Nutr. 1999;70(5):811–6.

    CAS  PubMed  Google Scholar 

  52. Hanbauer I, Rivero-Covelo I, Maloku E, Baca A, Hu Q, Hibbeln JR, et al. The decrease of n-3 fatty acid energy percentage in an equicaloric diet fed to B6C3Fe mice for three generations elicits obesity. Cardiovasc Psychiatry Neurol. 2009;2009:867041.

    Article  PubMed Central  PubMed  Google Scholar 

  53. Alvheim AR, Torstensen BE, Lin YH, Lillefosse HH, Lock EJ, Madsen L, et al. Dietary linoleic acid elevates the endocannabinoids 2-AG and anandamide and promotes weight gain in mice fed a low fat diet. Lipids. 2014;49(1):59–69.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Alvheim AR, Malde MK, Osei-Hyiaman D, Lin YH, Pawlosky RJ, et al. Dietary linoleic acid elevates endogenous 2-AG and anandamide and induces obesity. Obesity. 2012;20(10):1984–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Muhlhausler BS, Ailhaud GP. Omega-6 polyunsaturated fatty acids and the early origins of obesity. Curr Opin Endocrinol Diabetes Obes. 2013;20(1):56–61.

    Article  CAS  PubMed  Google Scholar 

  56. Skinner MK. Endocrine disruptor induction of epigenetic transgenerational inheritance of disease. Mol Cell Endocrinol. 2014;398:1–3.

    Google Scholar 

  57. Schneider JE, Brozek JM, Keen-Rhinehart E. Our stolen figures: the interface of sexual differentiation, endocrine disruptors, maternal programming, and energy balance. Horm Behav. 2014;66(1):104–19.

    Article  CAS  PubMed  Google Scholar 

  58. Olshansky SJ, Passaro DJ, Hershow RC, Layden J, Carnes BA, Brody J, et al. A potential decline in life expectancy in the United States in the 21st century. N Engl J Med. 2005;352(11):1138–45.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry Sears PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sears, B. (2015). Anti-inflammatory Diets to Reduce Gestational Problems Caused by Obesity, Metabolic Syndrome, and Diabetes. In: Ferrazzi, E., Sears, B. (eds) Metabolic Syndrome and Complications of Pregnancy. Springer, Cham. https://doi.org/10.1007/978-3-319-16853-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16853-1_14

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16852-4

  • Online ISBN: 978-3-319-16853-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics