Skip to main content

Biomolecular Interfaces Provide Universal Markers for Drug Specificity and Personalized Medicine

  • Chapter
  • First Online:
  • 903 Accesses

Abstract

Chapter 9 illustrated the power of the wrapping concept as guidance to engineer specificity and enhance safety in a kinase inhibitor. Yet, only a universal selectivity filter, applicable to the entire human kinome—even to kinases with unreported structure——and to idiosyncratic variations of the kinome would be truly useful for the drug designer. This chapter thematically belongs to the bioinformatics realm and addresses this issue at the broadest possible level. The surveyed findings reveal that targeting the epistructural singularities defined by protein dehydrons ushers a new generation of drugs that enable a tighter control of specificity and a personalization of the treatment. The universality of this selectivity filter in the field of therapeutic interference with cell signaling is thus established. The concepts introduced in this chapter are further extended to the realm of personalized molecular therapy (“the right drug for the right person”), since this area is regarded as a major imperative of post-genomic medicine. This perception is reinforced almost daily as promising therapeutic agents are recalled because of idiosyncratic side effects detected in small subpopulations of patients. However pressing the need, rational approaches to personalized drug therapy will ultimately and pivotally depend on our ability to translate genomic individualities and variations into molecular biomarkers that can guide a patient-tailored design. This chapter addresses also this issue and describes how the wrapping design concept can be brought to fruition in the personalization of drug therapy. The chapter introduces plausible scenarios in which genomic idiosyncrasies and oncogenic variations may promote targetable differences in the wrapping patterns of the gene products. Ultimately, the chapter extends an invitation to adopt and exploit protein wrapping as a molecular biomarker for personalized medicine within an enabling platform to tailor drugs to patient idiosyncrasies.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bain J, McLauchlan H, Eliott M, Cohen P (2003) The specificities of protein kinase inhibitors: an update. Biochem J 371:199–204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Druker BJ (2004) Molecularly targeted therapy: have the floodgates opened? Oncologist 9:357–360

    Article  PubMed  Google Scholar 

  3. Hopkins AL, Mason JS, Overington JP (2006) Can we rationally design promiscuous drugs? Curr Opin Struct Biol 16:127–136

    Article  CAS  PubMed  Google Scholar 

  4. Huse M, Kuriyan J (2002) The conformational plasticity of protein kinases. Cell 109:275–282

    Article  CAS  PubMed  Google Scholar 

  5. Knight ZA, Shokat KM (2005) Features of selective kinase inhibitors. Chem Biol 12:621–637

    Article  CAS  PubMed  Google Scholar 

  6. Chothia C (1974) Hydrophobic bonding and accessible surface area in proteins. Nature 248:338–339

    Article  CAS  PubMed  Google Scholar 

  7. Whittle PJ, Blundell TL (1994) Protein structure-based drug design. Annu Rev Biophys Biomol Struct 23:349–375

    Article  CAS  PubMed  Google Scholar 

  8. Feng BY, Shelat A, Doman TN, Guy RK, Shoichet BK (2005) High throughput assays for promiscuous inhibitors. Nat Chem Biol 1:146–148

    Article  CAS  PubMed  Google Scholar 

  9. Zhang X, Crespo A, Fernández A (2008) Trung promiscuous kinase inhibitors into safer drugs. Trends Biotech 26:295–300

    Article  Google Scholar 

  10. Chen JP, Zhang X, Fernández A (2007) Molecular basis for specificity in the druggable kinome: sequence-based analysis. Bioinformatics 23:563–572

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S (2002) The protein kinase complement of the human genome. Science 298:1912–1934

    Article  CAS  PubMed  Google Scholar 

  12. Braken C, Iakoucheva LM, Romero PR, Dunker AK (2004) Combining prediction, computation and experiment for the characterization of protein disorder. Curr Opin Struct Biol 14:570–576

    Article  Google Scholar 

  13. Fernández A, Berry RS (2004) Molecular dimension explored in evolution to promote proteomic complexity. Proc Natl Acad Sci USA 101:13460–13465

    Article  PubMed Central  PubMed  Google Scholar 

  14. Fabian MA, Biggs WH, Treiber DK et al (2005) A small molecule kinase interaction map for clinical kinase inhibitors. Nat Biotech 23:329–336

    Article  CAS  Google Scholar 

  15. Karaman MW, Herrgard S, Treiber DK et al (2008) A quantitative analysis of kinase inhibitor selectivity. Nat Biotech 26:127–132

    Article  CAS  Google Scholar 

  16. Bonneau R, Straus CE, Rohl CA et al (2002) De novo prediction of three-dimensional structures for major protein families. J Mol Biol 322:65–78

    Article  CAS  PubMed  Google Scholar 

  17. Chivian D, Kim DE, Malmstrom L et al (2005) Prediction of CASP6 structures using automated Robetta protocols. Proteins 61(Suppl 7):157–166

    Article  CAS  PubMed  Google Scholar 

  18. Higgins DG, Thompson JD, Gibson TJ (1996) Using CLUSTAL for multiple sequence alignments. Methods Enzymol 266:383–402

    Article  CAS  PubMed  Google Scholar 

  19. Fraczkiewicz R, Braun W (1998) Exact and efficient analytical calculation of the accessible surface areas and their gradient for macromolecules. J Comput Chem 19:319–333

    Article  CAS  Google Scholar 

  20. Ooi T, Oobatake M, Nemethy G, Scheraga HA (1987) Accessible surface area as a measure of the thermodynamic parameters of hydration of peptides. Proc Natl Acad Sci USA 84:3086–3090

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Ma B, Elkayam T, Wolfson T, Nussinov R (2003) Protein-protein interactions structurally conserved residues distinguish between binding sites and exposed protein surfaces. Proc Natl Acad Sci USA 100:5772–5777

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Fernández A, Maddipati S (2006) A priori inference of cross reactivity for drug-targeted kinases. J Med Chem 49:3092–3100

    Article  PubMed  Google Scholar 

  23. Fernández A, Sosnick TR, Colubri A (2002) Dynamics of hydrogen bond desolvation in protein folding. J Mol Biol 321:659–675

    Article  PubMed  Google Scholar 

  24. Fernández A (2004) Keeping dry and crossing membranes. Nat Biotech 22:1081–1084

    Article  Google Scholar 

  25. Gazdar A (2009) Personalized medicine and inhibition of EGFR signaling in lung cancer. New Eng J Med 361:1018–1020

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Janne PA, Gray N, Settleman J (2009) Factors underlying sensitivity of cancers to small molecule kinase inhibitors. Nat Rev Drug Discov 8:709–723

    Article  CAS  PubMed  Google Scholar 

  27. Fernández A, Sanguino A, Peng Z, Crespo A, Ozturk E, Zhang X, Wang S, Bornmann W, Lopez-Berestein (2007) Rational drug redesign to overcome drug resistance in cancer therapy: imatinib moving target. Cancer Res 67:4028–4033

    Article  PubMed Central  PubMed  Google Scholar 

  28. Hubbard SR (2004) Oncogenic mutations in B-Raf: some losses yield gains. Cell 116:764–766

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ariel Fernández Stigliano .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fernández Stigliano, A. (2015). Biomolecular Interfaces Provide Universal Markers for Drug Specificity and Personalized Medicine. In: Biomolecular Interfaces. Springer, Cham. https://doi.org/10.1007/978-3-319-16850-0_10

Download citation

Publish with us

Policies and ethics