Skip to main content

Towards Lateral Inhibition and Collective Perception in Unorganised Non-neural Systems

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 600))

Abstract

Lateral Inhibition (LI) phenomena occur in a wide range of neural sensory modalities, but are most famously described in the visual system of humans and other animals. The general mechanism can be summarised as when a stimulated neuron is itself excited and also suppresses the activity of its local neighbours via inhibitory connections. The effect is to generate an increase in contrast between spatial environmental stimuli. Simple organisms, such as the single-celled slime mould Physarum polycephalum possess no neural tissue yet, despite this, are known to exhibit complex computational behaviour. Could simple organisms such as slime mould approximate LI without recourse to neural tissue? We describe a model whereby LI can emerge without explicit inhibitory wiring, using only bulk transport effects.We use a multi-agent model of slime mould to reproduce the characteristic edge contrast amplification effects of LI using excitation via attractant based stimuli. We also explore a counterpart behaviour, Lateral Activation (where stimulated regions are inhibited and lateral regions are excited), using simulated exposure to light irradiation. In both cases restoration of baseline activity occurs when the stimuli are removed. In addition to the enhancement of local edge contrast the long-term change in population density distribution corresponds to a collective response to the global brightness of 2D image stimuli, including the scalloped intensity profile of the Chevreul staircase and the perceived difference of two identically bright patches in the Simultaneous Brightness Contrast (SBC) effect. This simple model approximatesLI contrast enhancement phenomena and global brightness perception in collective unorganised systems without fixed neural architectures. This may encourage further research into unorganised analogues of neural processes in simple organisms and suggests novel mechanisms to generate collective perception of contrast and brightness in distributed computing and robotic devices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adamatzky, A.: Physarum Machine. Implementation of a Kolmogorov-Uspensky machine on a biological substrate. Parallel Processing Letters 17(4), 455–467 (2007)

    MathSciNet  Google Scholar 

  2. Adamatzky, A.: Developing proximity graphs by Physarum polycephalum: does the plasmodium follow the toussaint hierarchy. Parallel Processing Letters 19, 105–127 (2008)

    Article  MathSciNet  Google Scholar 

  3. Adamatzky, A., Jones, J.: Towards Physarum robots: computing and manipulating on water surface. Journal of Bionic Engineering 5(4), 348–357 (2008)

    Article  Google Scholar 

  4. Adamatzky, A., Jones, J.: Programmable reconfiguration of. Physarum machines. Natural Computing 9(1), 219–237 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Aono, M., Hara, M.: Amoeba-based nonequilibrium neurocomputer utilizing fluctuations and instability. In: Akl, S.G., Calude, C.S., Dinneen, M.J., Rozenberg, G., Wareham, H.T. (eds.) UC 2007. LNCS, vol. 4618, pp. 41–54. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Blakeslee, B., McCourt, M.E.: A unified theory of brightness contrast and assimilation incorporating oriented multiscale spatial filtering and contrast normalization. Vision Research 44(21), 2483–2503 (2004)

    Article  Google Scholar 

  7. Gale, E., Adamatzky, A., de Lacy Costello, B.: Slime mould memristors. BioNanoScience, pp. 1–8 (2013)

    Google Scholar 

  8. Hartline, H.K., Ratliff, F.: Inhibitory interaction in the retina of limulus. In: Physiology of Photoreceptor Organs, pp. 381–447. Springer (1972)

    Google Scholar 

  9. Houtgast, T.: Psychophysical evidence for lateral inhibition in hearing. The Journal of the Acoustical Society of America 51(6B), 1885–1894 (1972)

    Article  Google Scholar 

  10. Ishiguro, A., Shimizu, M., Kawakatsu, T.: A modular robot that exhibits amoebic locomotion. Robotics and Autonomous Systems 54(8), 641–650 (2006)

    Article  Google Scholar 

  11. Jones, J.: Characteristics of pattern formation and evolution in approximations of Physarum transport networks. Artificial Life 16(2), 127–153 (2010)

    Article  Google Scholar 

  12. Jones, J.: The emergence and dynamical evolution of complex transport networks from simple low-level behaviours. International Journal of Unconventional Computing 6(2), 125–144 (2010)

    Google Scholar 

  13. Jones, J., Adamatzky, A.: Emergence of self-organized amoeboid movement in a multi-agent approximation of. Bioinspiration and Biomimetics 7(1), 016,009 (2012), http://stacks.iop.org/1748-3190/7/i=1/a=016009

  14. Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of neural science, vol, vol. 4. McGraw-Hill, New York (2000)

    Google Scholar 

  15. Macknik, S.L., Martinez-Conde, S.: The spatial and temporal effects of lateral inhibitory networks and their relevance to the visibility of spatiotemporal edges. Neurocomputing 58, 775–782 (2004)

    Article  Google Scholar 

  16. Nakagaki, T., Kobayashi, R., Nishiura, Y., Ueda, T.: Obtaining multiple separate food sources: behavioural intelligence in the Physarum plasmodium. R. Soc. Proc. Biol. Sci. 271(1554), 2305–2310 (2004)

    Article  Google Scholar 

  17. Nakagaki, T., Yamada, H., Toth, A.: Intelligence: Maze-solving by an amoeboid organism. Nature 407, 470 (2000)

    Article  Google Scholar 

  18. Peromaa, T.L., Laurinen, P.I.: Separation of edge detection and brightness perception. Vision Research 44(16), 1919–1925 (2004)

    Article  Google Scholar 

  19. Pershin, Y., La Fontaine, S., Di Ventra, M.: Memristive model of amoeba learning. Physical Review E 80(2), 021,926 (2009)

    Google Scholar 

  20. Pessoa, L., Mingolla, E., Neumann, H.: A contrast-and luminance-driven multiscale network model of brightness perception. Vision Research 35(15), 2201–2223 (1995)

    Article  Google Scholar 

  21. Sakiyama, T., Gunji, Y.P.: The müller-lyer illusion in ant foraging. PloS One 8(12), e81,714 (2013)

    Google Scholar 

  22. Serino, A., Haggard, P.: Touch and the body. Neuroscience & Biobehavioral Reviews 34(2), 224–236 (2010)

    Article  Google Scholar 

  23. Shirakawa, T., Adamatzky, A., Gunji, Y.P., Miyake, Y.: On simultaneous construction of voronoi diagram and delaunay triangulation by Physarum polycephalum. International Journal of Bifurcation and Chaos 19(9), 3109–3117 (2009)

    Article  Google Scholar 

  24. Takagi, S., Ueda, T.: Emergence and transitions of dynamic patterns of thickness oscillation of the plasmodium of the true slime mold Physarum polycephalum. Physica D 237, 420–427 (2008)

    Article  Google Scholar 

  25. Takamatsu, A.: Spontaneous switching among multiple spatio-temporal patterns in three-oscillator systems constructed with oscillatory cells of true slime mold. Physica D: Nonlinear Phenomena 223(2), 180–188 (2006)

    Google Scholar 

  26. Tani, I., Yamachiyo, M., Shirakawa, T., Gunji, Y.: Kanizsa illusory contours appearing in the plasmodium pattern of physarum polycephalum. Frontiers in Cellular and Infection Microbiology 4 (2014)

    Google Scholar 

  27. Tsuda, S., Aono, M., Gunji, Y.P.: Robust and emergent Physarum logical-computing. BioSystems 73, 45–55 (2004)

    Article  Google Scholar 

  28. Tsuda, S., Zauner, K.P., Gunji, Y.P.: Robot control with biological cells. BioSystems 87, 215–223 (2007)

    Article  Google Scholar 

  29. Urban, N.N.: Lateral inhibition in the olfactory bulb and in olfaction. Physiology & Behavior 77(4), 607–612 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff Dale Jones .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jones, J.D. (2015). Towards Lateral Inhibition and Collective Perception in Unorganised Non-neural Systems. In: Pancerz, K., Zaitseva, E. (eds) Computational Intelligence, Medicine and Biology. Studies in Computational Intelligence, vol 600. Springer, Cham. https://doi.org/10.1007/978-3-319-16844-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16844-9_6

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16843-2

  • Online ISBN: 978-3-319-16844-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics