Skip to main content

Application Exploring of Ubiquitous Pressure Sensitive Matrix as Input Resource for Home-Service Robots

  • Conference paper
Robot Intelligence Technology and Applications 3

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 345))

Abstract

We present how ubiquitous pressure sensor matrix can be used as information source for service-robots in two different applications. The textile pressure sensor, that utilizes the ubiquitousness of gravity, can be put on most surfaces in our environment to trace forces. As safety and human robot interaction are key factors for daily life service robots, we evaluated the pressure matrix in two scenarios: on the ground with toy furnitures demonstrating its capability for indoor localization and obstacle mapping, and on a sofa as an ubiquitous input device for giving commands to the robot in a natural way.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. World Population Ageing 2013 report. Technical report, United Nations, Department of Economic and Social Affairs, Population Division (2013), http://www.un.org/en/development/desa/population/publications/pdf/ageing/WorldPopulationAgeingReport2013.pdf

  2. World Robotics Industrial Robots 2013 - Summary; Service Robots 2013 - Summary. Technical report, IFR Statistical Department, VDMA Robotics and Automation association (2013), http://www.worldrobotics.org/uploads/media/Executive_Summary_WR_2013.pdf

  3. Zhou, B., Cheng, J., Sundholm, M., Lukowicz, P.: From smart clothing to smart table cloth: Design and implementation of a large scale, textile pressure matrix sensor. In: Maehle, E., Römer, K., Karl, W., Tovar, E. (eds.) ARCS 2014. LNCS, vol. 8350, pp. 159–170. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  4. Sundholm, M., Cheng, J., Zhou, B., Sethi, A., Lukowicz, P.: Smart-mat: Recognizing and counting gym exercises with low-cost resistive pressure sensing matrix. In: The ACM International Joint Conference on Pervasive and Ubiquitous Computing (UbiComp 2014) (to appear)

    Google Scholar 

  5. Cheng, J., Sundholm, M., Zhou, B., Kreil, M., Lukowicz, P.: Recognizing subtle user activities and person identity with cheap resistive pressure sensing carpet. In: International Conference on Intelligent Environments (IE-14) (to appear)

    Google Scholar 

  6. Tan, H., Slivovsky, L., Pentland, A.: A sensing chair using pressure distribution sensors. IEEE/ASME Transactions on Mechatronics 6(3), 261–268 (2001)

    Article  Google Scholar 

  7. Verver, M., Van Hoof, J., Oomens, C., Wismans, J., Baaijens, F.: A finite element model of the human buttocks for prediction of seat pressure distributions. Computer Methods in Biomechanics and Biomedical Engineering 7(4), 193–203 (2004)

    Article  Google Scholar 

  8. Xie, X., Zheng, B., Xue, W.: Object identification on car seat based on rough sets. In: 2011 IEEE 3rd International Conference on Communication Software and Networks (ICCSN), pp. 157–159 (2011)

    Google Scholar 

  9. Kortelainen, J., van Gils, M., Parkka, J.: Multichannel bed pressure sensor for sleep monitoring. In: Computing in Cardiology (CinC), pp. 313–316 (2012)

    Google Scholar 

  10. Lokavee, S., Puntheeranurak, T., Kerdcharoen, T., Watthanwisuth, N., Tuantranont, A.: Sensor pillow and bed sheet system: Unconstrained monitoring of respiration rate and posture movements during sleep. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1564–1568 (2012)

    Google Scholar 

  11. De Rossi, S., Lenzi, T., Vitiello, N., Donati, M., Persichetti, A., Giovacchini, F., Vecchi, F., Carrozza, M.: Development of an in-shoe pressure-sensitive device for gait analysis. In: 33rd Annual International Conference of the IEEE EMBS (2011)

    Google Scholar 

  12. Xu, W., Huang, M.C., Amini, N., He, L., Sarrafzadeh, M.: ecushion: A textile pressure sensor array design and calibration for sitting posture analysis. IEEE Sensors Journal 13(10), 3926–3934 (2013)

    Article  Google Scholar 

  13. Alavi, B., Pahlavan, K.: Modeling of the toa-based distance measurement error using uwb indoor radio measurements. IEEE Communications Letters 10(4), 275–277 (2006)

    Article  Google Scholar 

  14. Chintalapudi, K., Padmanabha Iyer, A., Padmanabhan, V.N.: Indoor localization without the pain. In: Proceedings of the Sixteenth Annual International Conference on Mobile Computing and Networking, pp. 173–184. ACM (2010)

    Google Scholar 

  15. Evennou, F., Marx, F.: Advanced integration of wifi and inertial navigation systems for indoor mobile positioning. Eurasip Journal on Applied Signal Processing 2006, 164–164 (2006)

    Google Scholar 

  16. Leppäkoski, H., Collin, J., Takala, J.: Pedestrian navigation based on inertial sensors, indoor map, and wlan signals. Journal of Signal Processing Systems 71(3), 287–296 (2013)

    Article  Google Scholar 

  17. Pirkl, G., Lukowicz, P.: Robust, low cost indoor positioning using magnetic resonant coupling. In: Proceedings of the 2012 ACM Conference on Ubiquitous Computing, pp. 431–440. ACM (2012)

    Google Scholar 

  18. Sanpechuda, T., Kovavisaruch, L.: A review of rfid localization: Applications and techniques. In: 5th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, ECTI-CON 2008, vol. 2, pp. 769–772. IEEE (2008)

    Google Scholar 

  19. DeSouza, G.N., Kak, A.C.: Vision for mobile robot navigation: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(2), 237–267 (2002)

    Article  Google Scholar 

  20. Song, P., Yu, H., Winkler, S.: Vision-based 3d finger interactions for mixed reality games with physics simulation. In: Proceedings of The 7th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and Its Applications in Industry, p. 7. ACM (2008)

    Google Scholar 

  21. Bränzel, A., Holz, C., Hoffmann, D., Schmidt, D., Knaust, M., Lühne, P., Meusel, R., Richter, S., Baudisch, P.: Gravityspace: Tracking users and their poses in a smart room using a pressure-sensing floor. In: CHI 2013, Paris, France, April 27-May 2 (2013)

    Google Scholar 

  22. Ballagas, R., Borchers, J., Rohs, M., Sheridan, J.G.: The smart phone: a ubiquitous input device. IEEE Pervasive Computing 5(1), 70–77 (2006)

    Article  Google Scholar 

  23. Jaimes, A., Sebe, N.: Multimodal human–computer interaction: A survey. Computer Vision and Image Understanding 108(1), 116–134 (2007)

    Article  Google Scholar 

  24. Sefar (July 2014), http://www.sefar.com/

  25. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, Inc., Orlando (1983)

    Google Scholar 

  26. Papageorgiou, C.P., Oren, M., Poggio, T.: A general framework for object detection. In: Proceedings of the Sixth International Conference on Computer Vision, ICCV 1998, p. 555. IEEE Computer Society, Washington, DC (1998)

    Google Scholar 

  27. Yilmaz, A., Javed, O., Shah, M.: Object tracking: A survey. ACM Comput. Surv. 38(4) (December 2006)

    Google Scholar 

  28. Wren, C., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder: Real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence 19, 780–785 (1997)

    Article  Google Scholar 

  29. Kalman, R.E.: A new approach to linear filtering and prediction problems. Transactions of the ASME–Journal of Basic Engineering 82(Series D), 35–45 (1960)

    Article  Google Scholar 

  30. Buxton, W.A.S.: The three mirrors of interaction: a holistic approach to user interfaces. In: MacDonald, L.W., Vince, J. (eds.) Interacting with Virtual Environments, pp. 1–12. Wiley (1994)

    Google Scholar 

  31. Hu, M.K.: Visual pattern recognition by moment invariants. IRE Transactions on Information Theory 8(2), 179–187 (1962)

    Article  MATH  Google Scholar 

  32. Trier, O.D., Jain, A.K., Taxt, T.: Feature extraction methods for character recognition-a survey. Pattern Recognition 29(4), 641–662 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Cheng, J., Sundholm, M., Hirsch, M., Zhou, B., Palacio, S., Lukowicz, P. (2015). Application Exploring of Ubiquitous Pressure Sensitive Matrix as Input Resource for Home-Service Robots. In: Kim, JH., Yang, W., Jo, J., Sincak, P., Myung, H. (eds) Robot Intelligence Technology and Applications 3. Advances in Intelligent Systems and Computing, vol 345. Springer, Cham. https://doi.org/10.1007/978-3-319-16841-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16841-8_33

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16840-1

  • Online ISBN: 978-3-319-16841-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics