Skip to main content

Reynolds-Averaged Navier–Stokes Modeling of Reshocked Richtmyer–Meshkov Instability Experiments and Simulations

  • Conference paper
29th International Symposium on Shock Waves 2 (ISSW 2013)

Included in the following conference series:

  • 1523 Accesses

Abstract

Turbulence generated by hydrodynamic instabilities is important in high-energydensity physics [1]. Examples in astrophysics include turbulent mixing processes during stellar core-collapse, where shock waves accelerate multiple perturbed gas interfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zhou, Y., Remington, B.A., Robey, H.F., Cook, A.W., Glendinning, S.G., Dimits, A., Buckingham, A.C., Zimmerman, G.B., Burke, E.W., Peyser, T.A., Cabot, W., Eliason, D.: Progress in understanding turbulent mixing induced by Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Phys. Plasmas 10, 1883–1886 (2003)

    Article  ADS  Google Scholar 

  2. Atzeni, S., Meyer-ter-Vehn, J.: The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter. International Series of Monographs on Physics, vol. 125. Oxford University Press (2004)

    Google Scholar 

  3. Vetter, M., Sturtevant, B.: Experiments on the Richtmyer-Meshkov instability of an air/SF6 interface. Shock Waves 4, 247–252 (1995)

    Article  ADS  Google Scholar 

  4. Poggi, F., Thorembey, M.-H., Rodriguez, G.: Velocity measurements in turbulent gaseous mixtures induced by Richtmyer-Meshkov instability. Phys. Fluids 10, 2698–2700 (1998)

    Article  ADS  Google Scholar 

  5. Brouillette, M.: The Richtmyer-Meshkov instability. Annu. Rev. Fluid Mech. 34, 445–468 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  6. Brouillette, M., Sturtevant, B.: Experiments on the Richtmyer-Meshkov instability: single-scale perturbations on a continuous interface. J. Fluid Mech. 263, 271–292 (1994)

    Article  ADS  Google Scholar 

  7. Schilling, O., Latini, M., Don, W.S.: Physics of reshock and mixing in single-mode Richtmyer-Meshkov instability. Phys. Rev. E 76, 026319 (2007); Erratum, Phys. Rev. E 85, 049904 (2012)

    Google Scholar 

  8. Gauthier, S., Bonnet, M.: A k-ε model for turbulent mixing in shock-tube flows induced by Rayleigh-Taylor instability. Phys. Fluids A 2, 1685–1694 (1990)

    Article  ADS  MATH  Google Scholar 

  9. Dimonte, G., Tipton, R.: K-L turbulence model for the self-similar growth of Rayleigh-Taylor and Richtmyer-Meshkov instabilities. Phys. Fluids 18, 085101 (2006)

    Article  MathSciNet  Google Scholar 

  10. Banerjee, A., Gore, R.A., Andrews, M.J.: Development and validation of a turbulent-mix model for variable density and compressible flows. Phys. Rev. E 82, 046309 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  11. Morán-López, J.T., Schilling, O.: Multicomponent Reynolds-averaged Navier–Stokes simulations of reshocked Richtmyer–Meshkov instability-induced mixing. High Energy Density Physics 9, 112–121 (2013)

    Article  ADS  Google Scholar 

  12. Morán-López, J.T., Schilling, O.: Multicomponent Reynolds-averaged Navier–Stokes simulations of Richtmyer–Meshkov instability and mixing induced by reshock at different times (2013) (submitted)

    Google Scholar 

  13. Latini, M., Schilling, O., Don, W.S.: Effects of WENO flux reconstruction order and spatial resolution on reshocked two-dimensional Richtmyer–Meshkov instability. J. Comput. Phys. 221, 805–836 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Leinov, E., Malamud, G., Elbaz, Y., Levin, L.A., Ben-Dor, G., Shvarts, D., Sadot, O.: Experimental and numerical investigation of the Richtmyer–Meshkov instability under re-shock conditions. J. Fluid Mech. 626, 449–475 (2009)

    Article  ADS  MATH  Google Scholar 

  15. Lombardini, M., Hill, D.J., Pullin, D.I., Meiron, D.I.: Atwood ratio dependence of Richtmyer–Meshkov flows under reshock conditions using large-eddy simulations. J. Fluid Mech. 670, 439–480 (2011)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Morán-López, J.T., Schilling, O., Holloway, J.P. (2015). Reynolds-Averaged Navier–Stokes Modeling of Reshocked Richtmyer–Meshkov Instability Experiments and Simulations. In: Bonazza, R., Ranjan, D. (eds) 29th International Symposium on Shock Waves 2. ISSW 2013. Springer, Cham. https://doi.org/10.1007/978-3-319-16838-8_40

Download citation

Publish with us

Policies and ethics