Skip to main content

Probabilistic State Space Decomposition for Human Motion Capture

  • Conference paper
  • First Online:
  • 2291 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9006))

Abstract

Model-based approaches to tracking of articulated objects, such as a human, have a high computational overhead due to the high dimensionality of the state space. In this paper, we present an approach to human motion capture (HMC) that mitigates the problem by performing a probabilistic decomposition of the state space. We achieve this by defining a conditional likelihood for each limb in the articulated human model as opposed to an overall likelihood. The conditional likelihoods are fused by making certain conditional independence assumptions inherent in the human body. Furthermore, we extend the popular stochastic search methods for HMC to make use of the decomposition. We demonstrate with Human Eva I and II datasets that our approach is capable of tracking more accurately than the state-of-the-art systems using only a small fraction of the computational resources.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Deutscher, J., Reid, I.: Articulated body motion capture by stochastic search. IJCV 61, 185–205 (2005)

    Article  Google Scholar 

  2. Sigal, L., Balan, A.O., Black, M.J.: Combined discriminative and generative articulated pose and non-rigid shape estimation, pp. 1337–1344. In: NIPS (2007)

    Google Scholar 

  3. Gall, J., Rosenhahn, B., Brox, T., Seidel, H.P.: Optimization and filtering for human motion capture. IJCV 87, 75–92 (2010)

    Article  Google Scholar 

  4. Sigal, L., Balan, A.O., Black, M.J.: HumanEva: Synchronized video and motion capture dataset and baseline algorithm for evaluation of articulated human motion. IJCV 87, 4–27 (2010)

    Article  Google Scholar 

  5. Pons-Moll, G., Baak, A., Gall, J., Leal-Taixé, L., Müller, M., Seidel, H.P., Rosenhahn, B.: Outdoor human motion capture using inverse kinematics and von Mises-Fisher sampling, pp. 1243–1250. In: ICCV (2011)

    Google Scholar 

  6. Liu, Y., Stoll, C., Gall, J., Seidel, H.P., Theobalt, C.: Markerless motion capture of interacting characters using multi-view image segmentation, pp. 1249–1256 . In: CVPR (2011)

    Google Scholar 

  7. MacCormick, J., Isard, M.: Partitioned sampling, articulated objects, and interface-quality hand tracking. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 3–19. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  8. Gall, J., Stoll, C., de Aguiar, E., Theobalt, C., Rosenhahn, B., Seidel, H.P.: Motion capture using joint skeleton tracking and surface estimation, pp. 1746–1753. In: CVPR (2009)

    Google Scholar 

  9. Bregler, C., Malik, J.: Tracking people with twists and exponential maps, pp. 8–15. In: CVPR (1998)

    Google Scholar 

  10. Ballan, L., Cortelazzo, G.M.: Marker-less motion capture of skinned models in a four camera set-up using optical flow and silhouettes. In: 3DPVT (2008)

    Google Scholar 

  11. Agarwal, A., Triggs, B.: 3d human pose from silhouettes by relevance vector regression, pp. 882–888. In: CVPR (2004)

    Google Scholar 

  12. Bo, L., Sminchisescu, C.: Twin Gaussian processes for structured prediction. IJCV 87, 28–52 (2010)

    Article  Google Scholar 

  13. Andriluka, M., Roth, S., Schiele, B.: Monocular 3d pose estimation and tracking by detection, pp. 623–630. In: CVPR (2010)

    Google Scholar 

  14. Sigal, L., Isard, M., Haussecker, H.W., Black, M.J.: Loose-limbed people: estimating 3d human pose and motion using non-parametric belief propagation. IJCV 98, 15–48 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Sidenbladh, H., Black, M.J., Fleet, D.J.: Stochastic tracking of 3D human figures using 2D image motion. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 702–718. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Liu, M.Y., Tuzel, O., Veeraraghavan, A., Chellappa, R.: Fast directional chamfer matching, pp. 1696–1703. In: CVPR (2010)

    Google Scholar 

  17. Shotton, J., Blake, A., Cipolla, R.: Multiscale categorical object recognition using contour fragments. TPAMI 30, 1270–1281 (2008)

    Article  Google Scholar 

  18. Kaliamoorthi, P., Kakarala, R.: Directional chamfer matching in 2.5 dimensions. IEEE Signal Process. Lett. 20, 1151–1154 (2013)

    Article  Google Scholar 

  19. https://sites.google.com/site/prabhukaliamoorthi/publications. Accessed 6 September (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramakrishna Kakarala .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (zip 16,216 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kaliamoorthi, P., Kakarala, R. (2015). Probabilistic State Space Decomposition for Human Motion Capture. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9006. Springer, Cham. https://doi.org/10.1007/978-3-319-16817-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16817-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16816-6

  • Online ISBN: 978-3-319-16817-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics