Skip to main content

A Novel Group-Sparsity-Optimization-Based Feature Selection Model for Complex Interaction Recognition

  • Conference paper
  • First Online:
Computer Vision -- ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9007))

Included in the following conference series:

Abstract

Interaction recognition is an important part of action recognition and has various applications such as surveillance systems, human computer interface, and machine intelligence. In this paper, we propose a novel group-sparsity-optimization-based feature selection model for complex interaction recognition. Firstly multiple local and global features are concatenated into a feature pool, and then based on the group sparsity optimization, different feature types are automatically selected to fit specific interaction categorization. We test our method on the benchmark dataset: the UT-interaction dataset. Experimental results substantiate the effectiveness of the proposed method on complex interaction recognition tasks as compared with current state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gallese, V., Fadiga, L., Fogassi, L., Rizzolatti, G.: Action recognition in the premotor cortex. Brain 119, 593–609 (1996)

    Article  Google Scholar 

  2. Weinland, D., Ronfard, R., Boyer, E.: Free viewpoint action recognition using motion history volumes. Comput. Vis. Image Underst. 104, 249–257 (2006)

    Article  Google Scholar 

  3. Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local svm approach. In: 2004 IEEE International Conference on Pattern Recognition, vol. 3, pp. 32–36. IEEE (2004)

    Google Scholar 

  4. Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. In: 2005 IEEE International Conference on Computer Vision, vol. 2, pp. 1395–1402. IEEE (2005)

    Google Scholar 

  5. Bregonzio, M., Gong, S., Xiang, T.: Recognising action as clouds of space-time interest points. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1948–1955. IEEE (2009)

    Google Scholar 

  6. Hoai, M., Lan, Z.Z., De la Torre, F.: Joint segmentation and classification of human actions in video. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3265–3272. IEEE (2011)

    Google Scholar 

  7. Joo, S.W., Chellappa, R.: Attribute grammar-based event recognition and anomaly detection. In: 2006 Conference on Computer Vision and Pattern Recognition Workshop, pp. 107–107. IEEE (2006)

    Google Scholar 

  8. Khan, S.M., Shah, M.: Detecting group activities using rigidity of formation. In: Proceedings of the 13th ACM international conference on Multimedia, pp. 403–406. ACM (2005)

    Google Scholar 

  9. Kitani, K.M., Sato, Y., Sugimoto, A.: Deleted interpolation using a hierarchical bayesian grammar network for recognizing human activity. In: 2005 Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp. 239–246. IEEE (2005)

    Google Scholar 

  10. Waltisberg, D., Yao, A., Gall, J., Van Gool, L.: Variations of a hough-voting action recognition system. In: Ünay, D., Çataltepe, Z., Aksoy, S. (eds.) Recognizing Patterns in Signals, Speech, Images, and Videos. LNCS, vol. 6388, pp. 306–312. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  11. Oliver, N., Rosario, B., Pentland, A.: Graphical models for recognizing human interactions. In: Proceedings of International Conference on Neural Information and Processing Systems, pp. 924–930. Citeseer (1998)

    Google Scholar 

  12. Dollar, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior recognition via sparse spatio-temporal features. In: 2nd Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pp. 65–72 (2005)

    Google Scholar 

  13. Wu, X., Ngo, C.W., Li, J., Zhang, Y.: Localizing volumetric motion for action recognition in realistic videos. In: Proceedings of the 17th ACM International Conference on Multimedia, pp. 505–508 (2009)

    Google Scholar 

  14. Yu, T.H., Kim, T.K., Cipolla, R.: Real-time action recognition by spatiotemporal semantic and structural forest. In: Proceedings of the British Machine Vision Conference, pp. 52.1–52.12. BMVA Press (2010)

    Google Scholar 

  15. Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

    Google Scholar 

  16. Choi, W., Savarese, S.: A unified framework for multi-target tracking and collective activity recognition. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) Computer Vision - ECCV 2012. LNCS. Springer, Heidelberg (2012)

    Google Scholar 

  17. Laptev, I., Pérez, P.: Retrieving actions in movies. In: IEEE 11th International Conference on Computer Vision, pp. 1–8. IEEE (2007)

    Google Scholar 

  18. Vahdat, A., Gao, B., Ranjbar, M., Mori, G.: A discriminative key pose sequence model for recognizing human interactions. In: 2011 IEEE International Conference on Computer Vision Workshops, pp. 1729–1736. IEEE (2011)

    Google Scholar 

  19. Lan, T., Wang, Y., Yang, W., Robinovitch, S.N., Mori, G.: Discriminative latent models for recognizing contextual group activities. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1549–1562 (2012)

    Article  Google Scholar 

  20. Kong, Y., Jia, Y., Fu, Y.: Interactive phrases: semantic descriptions for human interaction recognition. IEEE Trans. Pattern Anal. Mach. Intell. 36, 1775–1788 (2014)

    Article  Google Scholar 

  21. Patron-Perez, A., Marszalek, M., Reid, I., Zisserman, A.: Structured learning of human interactions in tv shows. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2441–2453 (2012)

    Article  Google Scholar 

  22. Tan, M., Wang, L., Tsang, I.W.: Learning sparse svm for feature selection on very high dimensional datasets. In: Proceedings of the 27th International Conference on Machine Learning, pp. 1047–1054 (2010)

    Google Scholar 

  23. Qian, Y., Zhou, J., Ye, M., Wang, Q.: Structured sparse model based feature selection and classification for hyperspectral imagery. In: 2011 IEEE International Conference on Geoscience and Remote Sensing Symposium, pp. 1771–1774. IEEE (2011)

    Google Scholar 

  24. Felzenszwalb, P., McAllester, D., Ramanan, D.: A discriminatively trained, multiscale, deformable part model. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

    Google Scholar 

  25. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: 2005 IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 886–893. IEEE (2005)

    Google Scholar 

  26. Ryoo, M.S.: Human activity prediction: early recognition of ongoing activities from streaming videos. In: 2011 IEEE International Conference on Computer Vision, pp. 1036–1043. IEEE (2011)

    Google Scholar 

  27. Dong, Z., Kong, Y., Liu, C., Li, H., Jia, Y.: Recognizing human interaction by multiple features. In: 2011 First Asian Conference on Pattern Recognition, pp. 77–81. IEEE (2011)

    Google Scholar 

  28. Wang, H., Klaser, A., Schmid, C., Liu, C.L.: Action recognition by dense trajectories. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3169–3176. IEEE (2011)

    Google Scholar 

  29. Farnebäck, G.: Two-frame motion estimation based on polynomial expansion. In: Bigun, J., Gustavsson, T. (eds.) SCIA 2003. LNCS, vol. 2749, pp. 363–370. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  30. Wang, H., Ullah, M.M., Klaser, A., Laptev, I., Schmid, C., et al.: Evaluation of local spatio-temporal features for action recognition. In: 2009 British Machine Vision Conference, p. 127 (2009)

    Google Scholar 

  31. Dalal, N., Triggs, B., Schmid, C.: Human detection using oriented histograms of flow and appearance. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 428–441. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  32. Oneata, D., Verbeek, J., Schmid, C.: Action and event recognition with fisher vectors on a compact feature set. In: 2013 IEEE International Conference on Computer Vision, pp. 1817–1824. IEEE (2013)

    Google Scholar 

  33. Nie, F., Huang, H., Cai, X., Ding, C.H.: Efficient and robust feature selection via joint 2, 1-norms minimization. In: Advances in Neural Information Processing Systems, pp. 1813–1821 (2010)

    Google Scholar 

  34. Xu, Z., Dai, M., Meng, D.: Fast and efficient strategies for model selection of gaussian support vector machine. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 39, 1292–1307 (2009)

    Article  Google Scholar 

  35. Chang, C.C., Lin, C.J.: Libsvm: a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2, 27 (2011)

    Article  Google Scholar 

  36. Baird, L., Moore, A.W.: Gradient descent for general reinforcement learning. In: Advances in Neural Information Processing Systems, pp. 968–974 (1999)

    Google Scholar 

  37. Ryoo, M.S., Aggarwal, J.K.: Spatio-temporal relationship match: video structure comparison for recognition of complex human activities. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1593–1600. IEEE (2009)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (No. 61102131, 61373114, 61275099), the Natural Science Foundation of Chongqing Science and Technology Commission (No. cstc2014jcyjA40048), the Project of Key Laboratory of Signal and Information Processing of Chongqing (No. CSTC2009CA2003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenqiang Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Yang, L., Gao, C., Meng, D., Jiang, L. (2015). A Novel Group-Sparsity-Optimization-Based Feature Selection Model for Complex Interaction Recognition. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9007. Springer, Cham. https://doi.org/10.1007/978-3-319-16814-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16814-2_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16813-5

  • Online ISBN: 978-3-319-16814-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics