Skip to main content

Global Motion Estimation from Relative Measurements in the Presence of Outliers

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9007))

Abstract

This work addresses the generic problem of global motion estimation (homographies, camera poses, orientations, etc.) from relative measurements in the presence of outliers. We propose an efficient and robust framework to tackle this problem when motion parameters belong to a Lie group manifold. It exploits the graph structure of the problem as well as the geometry of the manifold. It is based on the recently proposed iterated extended Kalman filter on matrix Lie groups. Our algorithm iteratively samples a minimum spanning tree of the graph, applies Kalman filtering along this spanning tree and updates the graph structure, until convergence. The graph structure update is based on computing loop errors in the graph and applying a proposed statistical inlier test on Lie groups. This is done efficiently, taking advantage of the covariance matrix of the estimation errors produced by the filter. The proposed formalism is applied on both synthetic and real data, for a camera pose registration problem, an automatic image mosaicking problem and a partial 3D reconstruction merging problem. In these applications, the framework presented in this paper efficiently recovers the global motions while the state of the art algorithms fail due to the presence of a large proportion of outliers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We use the Matlab library Matgraph [35] to find the path between \(\mathfrak {m}\) and \(\mathfrak {n}\).

  2. 2.

    The supplementary material and the Matlab code are available at https://sites.google.com/site/guillaumebourmaud/.

References

  1. Agrawal, M.: A Lie algebraic approach for consistent pose registration for general Euclidean motion. In: IROS, pp. 1891–1897 (2006)

    Google Scholar 

  2. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  3. Roberts, R., Sinha, S.N., Szeliski, R., Steedly, D.: Structure from motion for scenes with large duplicate structures. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3137–3144. IEEE (2011)

    Google Scholar 

  4. Hartley, R., Trumpf, J., Dai, Y., Li, H.: Rotation averaging. Int. J. Comput. Vis. 103, 1–39 (2013)

    Article  MathSciNet  Google Scholar 

  5. Brown, M., Lowe, D.G.: Automatic panoramic image stitching using invariant features. Int. J. Comput. Vis. 74, 59–73 (2007)

    Article  Google Scholar 

  6. Wachinger, C., Wein, W., Navab, N.: Registration strategies and similarity measures for three-dimensional ultrasound mosaicing. Acad. Radiol. 15, 1404–1415 (2008)

    Article  Google Scholar 

  7. Chirikjian, G.S.: Stochastic Models, Information Theory, and Lie Groups, vol. 2. Springer, Boston (2012)

    Book  MATH  Google Scholar 

  8. Selig, J.M.: Lie Groups and Lie Algebras in Robotics. NATO Science Series II: Mathematics, Physics and Chemistry, vol. 136, pp. 101–125. Springer, Dordrecht (2005)

    Google Scholar 

  9. Malis, E., Hamel, T., Mahony, R., Morin, P.: Dynamic estimation of homography transformations on the special linear group of visual servo control. In: IEEE Conference on Robotics and Automation (2009)

    Google Scholar 

  10. Strasdat, H., Davison, A., Montiel, J., Konolige, K.: Double window optimisation for constant time visual SLAM. In: IEEE International Conference on Computer Vision (ICCV) (2011)

    Google Scholar 

  11. Huber, P.J., et al.: Robust estimation of a location parameter. Ann. Math. Stat. 35, 73–101 (1964)

    Article  MATH  Google Scholar 

  12. Bourmaud, G., Mégret, R., Giremus, A., Berthoumieu, Y.: Global motion estimation from relative measurements using iterated extended Kalman filter on matrix Lie groups. In: ICIP 2014

    Google Scholar 

  13. Bandeira, A.S., Singer, A., Spielman, D.A.: A Cheeger inequality for the graph connection laplacian (2012). arXiv preprint arXiv:1204.3873

  14. Singer, A., Shkolnisky, Y.: Three-dimensional structure determination from common lines in cryo-em by eigenvectors and semidefinite programming. SIAM J. Imaging Sci. 4, 543–572 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  15. Boumal, N., Singer, A., Absil, P.A.: Robust estimation of rotations from relative measurements by maximum likelihood. In: Proceedings of the 52nd Conference on Decision and Control, CDC (2013)

    Google Scholar 

  16. Wang, L., Singer, A.: Exact and stable recovery of rotations for robust synchronization. Inf. Infer. 2, 145–193 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hartley, R., Aftab, K., Trumpf, J.: L1 rotation averaging using the Weiszfeld algorithm. In: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3041–3048. IEEE (2011)

    Google Scholar 

  18. Chatterjee, A., Govindu, V.M.: Efficient and robust large-scale rotation averaging. In: ICCV (2013)

    Google Scholar 

  19. Crandall, D.J., Owens, A., Snavely, N., Huttenlocher, D.: Discrete-continuous optimization for large-scale structure from motion. In: CVPR, pp. 3001–3008 (2011)

    Google Scholar 

  20. Enqvist, O., Kahl, F., Olsson, C.: Non-sequential structure from motion. In: ICCV Workshops, pp. 264–271 (2011)

    Google Scholar 

  21. Jiang, N., Cui, Z., Tan, P.: A global linear method for camera pose registration. In: 2013 IEEE International Conference on Computer Vision

    Google Scholar 

  22. Moulon, P., Monasse, P., Marlet, R.: Global fusion of relative motions for robust, accurate and scalable structure from motion. In: 2013 IEEE International Conference on Computer Vision

    Google Scholar 

  23. Zach, C., Klopschitz, M., Pollefeys, M.: Disambiguating visual relations using loop constraints. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1426–1433. IEEE (2010)

    Google Scholar 

  24. Jiang, N., Tan, P., Cheong, L.F.: Seeing double without confusion: Structure-from-motion in highly ambiguous scenes. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1458–1465. IEEE (2012)

    Google Scholar 

  25. Govindu, V.M.: Robustness in motion averaging. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3852, pp. 457–466. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  26. Wilson, K., Snavely, N.: Network principles for sfm: Disambiguating repeated structures with local context. In: 2013 IEEE International Conference on Computer Vision

    Google Scholar 

  27. Sunderhauf, N., Protzel, P.: Switchable constraints for robust pose graph SLAM. In: IROS (2012)

    Google Scholar 

  28. Latif, Y., Cadena, C., Neira, J.: Robust loop closing over time for pose graph SLAM. Int. J. Robot. Res. 32(14), 1611–1626 (2013)

    Article  Google Scholar 

  29. Olson, E., Agarwal, P.: Inference on networks of mixtures for robust robot mapping. In: RSS (2012)

    Google Scholar 

  30. Bourmaud, G., Mégret, R., Giremus, A., Berthoumieu, Y.: Discrete extended Kalman filter on Lie groups. In: 2013 Proceedings of the 21st European Signal Processing Conference (EUSIPCO) (2013)

    Google Scholar 

  31. Wang, Y., Chirikjian, G.: Error propagation on the Euclidean group with applications to manipulators kinematics. IEEE Trans. Rob. 22, 591–602 (2006)

    Article  Google Scholar 

  32. Wolfe, K., Mashner, M., Chirikjian, G.: Bayesian fusion on Lie groups. J. Algebraic Stat. 2, 75–97 (2011)

    MathSciNet  Google Scholar 

  33. Barfoot, T.D., Furgale, P.T.: Associating uncertainty with three-dimensional poses for use in estimation problems. IEEE Trans. Robot. 30, 679–693 (2014)

    Article  Google Scholar 

  34. Fisher, R.A., Yates, F., et al.: Statistical tables for biological, agricultural and medical research. Oliver & Boyd, London (1949)

    Google Scholar 

  35. Scheinerman, E.R.: (Matgraph: a matlab toolbox for graph theory)

    Google Scholar 

  36. Benhimane, S., Malis, E.: Homography-based 2d visual tracking and servoing. Int. J. Rob. Res. 26, 661–676 (2007)

    Article  Google Scholar 

Download references

Acknowledgment

The research leading to these results has received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement 288199 - Dem@Care. The authors would like to thank the reviewers, Moncef Hidane and Cornelia Vacar for their valuable help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Bourmaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bourmaud, G., Mégret, R., Giremus, A., Berthoumieu, Y. (2015). Global Motion Estimation from Relative Measurements in the Presence of Outliers. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9007. Springer, Cham. https://doi.org/10.1007/978-3-319-16814-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16814-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16813-5

  • Online ISBN: 978-3-319-16814-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics