Skip to main content

Data Mining for Action Recognition

  • Conference paper
  • First Online:
Computer Vision -- ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9007))

Included in the following conference series:

  • 1629 Accesses

Abstract

In recent years, dense trajectories have shown to be an efficient representation for action recognition and have achieved state-of-the-art results on a variety of increasingly difficult datasets. However, while the features have greatly improved the recognition scores, the training process and machine learning used hasn’t in general deviated from the object recognition based SVM approach. This is despite the increase in quantity and complexity of the features used. This paper improves the performance of action recognition through two data mining techniques, APriori association rule mining and Contrast Set Mining. These techniques are ideally suited to action recognition and in particular, dense trajectory features as they can utilise the large amounts of data, to identify far shorter discriminative subsets of features called rules. Experimental results on one of the most challenging datasets, Hollywood2 outperforms the current state-of-the-art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. In: ICCV 2005, pp. 1395–1402 (2005)

    Google Scholar 

  2. Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local SVM approach. In: ICPR 2004, pp. 32–36 (2004)

    Google Scholar 

  3. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: a large video database for human motion recognition. In: ICCV 2011 (2011)

    Google Scholar 

  4. Marszalek, M., Laptev, I., Schmid, C.: Actions in context. In: CVPR 2009 (2009)

    Google Scholar 

  5. Scovanner, P., Ali, S., Shah, M.: A 3-dimensional sift descriptor and its application to action recognition. In: Proceedings of MULTIMEDIA 2007, pp. 357–360 (2007)

    Google Scholar 

  6. Willems, G., Tuytelaars, T., Van Gool, L.: An efficient dense and scale-invariant spatio-temporal interest point detector. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part II. LNCS, vol. 5303, pp. 650–663. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Klaser, A., Marszalek, M., Schmid, C.: A spatio-temporal descriptor based on 3D gradients. In: BMVC 2008 (2008)

    Google Scholar 

  8. Laptev, I., Lindeberg, T.: Space-time interest points. In: ICCV 2003, pp. 432–439 (2003)

    Google Scholar 

  9. Wang, H., Kläser, A., Schmid, C., Liu, C.L.: Dense trajectories and motion boundary descriptors for action recognition. Int. J. Comput. Vis. 103, 60–79 (2013). Springer

    Article  MathSciNet  Google Scholar 

  10. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: CVPR 2001, pp. 511–518 (2001)

    Google Scholar 

  11. Maron, O., Lozano-Pérez, T.: A framework for multiple-instance learning. In: Advances in Neural Information Processing Systems, pp. 570–576 (1998)

    Google Scholar 

  12. Gilbert, A., Illingworth, J., Bowden, R.: Action recognition using mined hierarchical compound features. IEEE Trans. Pattern Anal. Mach. Intell. 33, 883–897 (2011)

    Article  Google Scholar 

  13. Quack, T., Ferrari, V., Leibe, B., Gool, L.: Efficient mining of frequent and distinctive feature configurations. In: ICCV 2007 (2007)

    Google Scholar 

  14. Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: CVPR 2008, pp. 1–8 (2008)

    Google Scholar 

  15. Niebles, J.C., Wang, H., Fei-Fei, L.: Unsupervised learning of human action categories using spatial-temporal words. Int. J. comput. vis. 79, 299–318 (2008)

    Article  Google Scholar 

  16. Uemura, H., Ishikawa, S., Mikolajczyk, K.: Feature tracking and motion compensation for action recognition. In: BMVC 2008 (2008)

    Google Scholar 

  17. Park, D., Zitnick, C.L., Ramanan, D., Dollár, P.: Exploring weak stabilization for motion feature extraction. In: CVPR 2013, pp. 2882–2889 (2013)

    Google Scholar 

  18. Hoai, M., Lan, Z.Z., De la Torre, F.: Joint segmentation and classification of human actions in video. In: CVPR 2011, pp. 3265–3272 (2011)

    Google Scholar 

  19. Han, D., Bo, L., Sminchisescu, C.: Selection and context for action recognition. In: ICCV 2009, pp. 1933–1940 (2009)

    Google Scholar 

  20. Oneata, D., Verbeek, J., Schmid, C.: Action and event recognition with fisher vectors on a compact feature set. In: ICCV 2013, pp. 1817–1824 (2013)

    Google Scholar 

  21. Yuan, J., Wu, Y., Yang, M.: Discovery of collocation patterns: from visual words to visual phrases. In: CVPR 2007, pp. 1–8 (2007)

    Google Scholar 

  22. Nowozin, S., Bakir, G., Tsuda, K.: Discriminative subsequence mining for action classification. In: ICCV 2007, pp. 1–8 (2007)

    Google Scholar 

  23. Siva, P., Russell, C., Xiang, T.: In defence of negative mining for annotating weakly labelled data. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part III. LNCS, vol. 7574, pp. 594–608. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  24. Wang, L., Qiao, Y., Tang, X.: Mining motion atoms and phrases for complex action recognition. In: ICCV 2013, pp. 2680–2687 (2013)

    Google Scholar 

  25. Sparck Jones, K.: A statistical interpretation of term specificity and its application in retrieval. J. Doc. 28, 11–21 (1972)

    Article  Google Scholar 

  26. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: Proceedings of 20th International Conference on Very Large Data Bases VLDB 1994, pp. 487–499 (1994)

    Google Scholar 

  27. Menzies, T., Hu, Y.: Data mining for very busy people. Computer 36, 22–29 (2003)

    Article  Google Scholar 

  28. Bay, S.D., Pazzani, M.J.: Detecting change in categorical data: Mining contrast sets. In: KDD, pp. 302–306 (1999)

    Google Scholar 

  29. Mathe, S., Sminchisescu, C.: Dynamic eye movement datasets and learnt saliency models for visual action recognition. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573, pp. 842–856. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  30. Jain, M., Jégou, H., Bouthemy, P.: Better exploiting motion for better action recognition. In: CVPR 2013, pp. 2555–2562 (2013)

    Google Scholar 

Download references

Acknowledgement

This work was supported by the EPSRC grant “Learning to Recognise Dynamic Visual Content from Broadcast Footage” (EP/I011811/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Gilbert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gilbert, A., Bowden, R. (2015). Data Mining for Action Recognition. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9007. Springer, Cham. https://doi.org/10.1007/978-3-319-16814-2_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16814-2_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16813-5

  • Online ISBN: 978-3-319-16814-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics