Skip to main content

Hybrid Euclidean-and-Riemannian Metric Learning for Image Set Classification

  • Conference paper
  • First Online:
Computer Vision -- ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9005))

Included in the following conference series:

Abstract

We propose a novel hybrid metric learning approach to combine multiple heterogenous statistics for robust image set classification. Specifically, we represent each set with multiple statistics – mean, covariance matrix and Gaussian distribution, which generally complement each other for set modeling. However, it is not trivial to fuse them since the mean vector with \(d\)-dimension often lies in Euclidean space \(\mathbb {R}^d\), whereas the covariance matrix typically resides on Riemannian manifold \(Sym^+_{d}\). Besides, according to information geometry, the space of Gaussian distribution can be embedded into another Riemannian manifold \(Sym^+_{d+1}\). To fuse these statistics from heterogeneous spaces, we propose a Hybrid Euclidean-and-Riemannian Metric Learning (HERML) method to exploit both Euclidean and Riemannian metrics for embedding their original spaces into high dimensional Hilbert spaces and then jointly learn hybrid metrics with discriminant constraint. The proposed method is evaluated on two tasks: set-based object categorization and video-based face recognition. Extensive experimental results demonstrate that our method has a clear superiority over the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://engineering.purdue.edu/~bouman/software/cluster/.

  2. 2.

    The source code is released on the website: http://vipl.ict.ac.cn/resources/codes.

References

  1. Kim, T., Kittler, J., Cipolla, R.: Discriminative learning and recognition of image set classes using canonical correlations. IEEE Trans. PAMI 29, 1005–1018 (2007)

    Article  Google Scholar 

  2. Gretton, A., Borgwardt, K.M., Rasch, M.J., Schölkopf, B., Smola, A.: A kernel two-sample test. JMLR 13, 723–773 (2012)

    MATH  Google Scholar 

  3. Cevikalp, H., Triggs, B.: Face recognition based on image sets. In: CVPR (2010)

    Google Scholar 

  4. Hu, Y., Mian, A., Owens, R.: Sparse approximated nearest points for image set classification. In: CVPR (2011)

    Google Scholar 

  5. Yang, M., Zhu, P., Gool, L., Zhang, L.: Face recognition based on regularized nearest points between image sets. In: FG (2013)

    Google Scholar 

  6. Huang, Z., Zhao, X., Shan, S., Wang, R., Chen, X.: Coupling alignments with recognition for still-to-video face recognition. In: ICCV (2013)

    Google Scholar 

  7. Zhu, P., Zhang, L., Zuo, W., Zhang, D.: From point to set: extend the learning of distance metrics. In: ICCV (2013)

    Google Scholar 

  8. Yamaguchi, O., Fukui, K., Maeda., K.: Face recognition using temporal image sequence. In: FG (1998)

    Google Scholar 

  9. Wang, R., Shan, S., Chen, X., Dai, Q., Gao, W.: Manifold-Manifold distance and its application to face recognition with image sets. IEEE Trans. Image Proces. 21, 4466–4479 (2012)

    Article  MathSciNet  Google Scholar 

  10. Hamm, J., Lee, D.D.: Grassmann discriminant analysis: a unifying view on subspace-based learning. In: ICML, pp. 376–383 (2008)

    Google Scholar 

  11. Wang, R., Chen, X.: Manifold discriminant analysis. In: CVPR (2009)

    Google Scholar 

  12. Wang, R., Guo, H., Davis, L., Dai, Q.: Covariance discriminative learning: a natural and efficient approach to image set classification. In: CVPR (2012)

    Google Scholar 

  13. Lu, J., Wang, G., Moulin, P.: Image set classification using holistic multiple order statistics features and localized multi-kernel metric learning. In: ICCV (2013)

    Google Scholar 

  14. Shakhnarovich, G., Fisher III, J.W., Darrell, T.: Face recognition from long-term observations. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 851–865. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  15. Arandjelovic, O., Shakhnarovich, G., Fisher, J., Cipolla, R., Darrell, T.: Face recognition with image sets using manifold density divergence. In: CVPR (2005)

    Google Scholar 

  16. Hotelling, H.: Relations between two sets of variates. Biometrika 28, 312–377 (1936)

    Article  Google Scholar 

  17. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)

    Book  MATH  Google Scholar 

  18. Harandi, M.T., Sanderson, C., Shirazi, S., Lovell, B.C.: Graph embedding discriminant analysis on Grassmannian manifolds for improved image set matching. In: CVPR (2011)

    Google Scholar 

  19. Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing. IJCV 66, 41–66 (2006)

    Article  MATH  Google Scholar 

  20. Tuzel, O., Porikli, F., Meer, P.: Region covariance: a fast descriptor for detection and classification. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part II. LNCS, vol. 3952, pp. 589–600. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Geometric means in a novel vector space structure on symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 29, 328–347 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Amari, S.I., Nagaoka, H.: Methods of Information Geometry. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  23. Huang, Z., Wang, R., Shan, S., Chen, X.: Learning Euclidean-to-Riemannian metric for point-to-set classification. In: CVPR (2014)

    Google Scholar 

  24. Jayasumana, S., Hartley, R., Salzmann, M., Li, H., Harandi, M.: Kernel methods on the Riemannian manifold of symmetric positive definite matrices. In: CVPR (2013)

    Google Scholar 

  25. Davis, J.V., Kulis, B., Jain, P., Sra, S., Dhillon, I.S.: Information-theoretic metric learning. In: ICML (2007)

    Google Scholar 

  26. Lovrić, M., Min-Oo, M., Ruh, E.A.: Multivariate normal distributions parametrized as a Riemannian symmetric space. J. Multivar. Anal. 74, 36–48 (2000)

    Article  MATH  Google Scholar 

  27. Baudat, G., Anouar, F.: Generalized discriminant analysis using a kernel approach. Neural Comput. 12, 2385–2404 (2000)

    Article  Google Scholar 

  28. Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7, 200–217 (1967)

    Article  Google Scholar 

  29. Censor, Y., Zenios, S.: Parallel Optimization: Theory, Algorithms, and Applications. Oxford University Press, Oxford (1997)

    MATH  Google Scholar 

  30. Rakotomamonjy, A., Bach, F.R., Canu, S., Grandvalet, Y.: SimpleMKL. J. Mach. Learn. Res. (JMLR) 9, 2491–2521 (2008)

    MATH  MathSciNet  Google Scholar 

  31. McFee, B., Lanckriet, G.: Learning multi-modal similarity. JMLR 12, 491–523 (2011)

    MATH  MathSciNet  Google Scholar 

  32. Xie, P., Xing, E.P.: Multi-modal distance metric learning. In: IJCAI (2013)

    Google Scholar 

  33. Vemulapalli, R., Pillai, J.K., Chellappa, R.: Kernel learning for extrinsic classification of manifold features. In: CVPR (2013)

    Google Scholar 

  34. Cui, Z., Li, W., Xu, D., Shan, S., Chen, X.: Fusing robust face region descriptors via multiple metric learning for face recognition in the wild. In: CVPR (2013)

    Google Scholar 

  35. Jayasumana, S., Hartley, R., Salzmann, M., Li, H., Harandi, M.: Combining multiple manifold-valued descriptors for improved object recognition. In: DICTA (2013)

    Google Scholar 

  36. Leibe, B., Schiele, B.: Analyzing appearance and contour based methods for object categorization. In: CVPR (2003)

    Google Scholar 

  37. Kim, M., Kumar, S., Pavlovic, V., Rowley, H.: Face tracking and recognition with visual constraints in real-world videos. In: CVPR (2008)

    Google Scholar 

  38. Huang, Z., Shan, S., Zhang, H., Lao, S., Kuerban, A., Chen, X.: Benchmarking still-to-video face recognition via partial and local linear discriminant analysis on COX-S2V dataset. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012, Part II. LNCS, vol. 7725, pp. 589–600. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Acknowledgement

The work is partially supported by Natural Science Foundation of China under contracts nos.61390511, 61379083, and 61222211.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiping Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Huang, Z., Wang, R., Shan, S., Chen, X. (2015). Hybrid Euclidean-and-Riemannian Metric Learning for Image Set Classification. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9005. Springer, Cham. https://doi.org/10.1007/978-3-319-16811-1_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16811-1_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16810-4

  • Online ISBN: 978-3-319-16811-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics