Skip to main content

On the Performance of Pose-Based RGB-D Visual Navigation Systems

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9004))

Abstract

This paper presents a thorough performance analysis of several variants of the feature-based visual navigation system that uses RGB-D data to estimate in real-time the trajectory of a freely moving sensor. The evaluation focuses on the advantages and problems that are associated with choosing a particular structure of the sensor-tracking front-end, employing particular feature detectors/descriptors, and optimizing the resulting trajectory treated as a graph of sensor poses. Moreover, a novel yet simple graph pruning algorithm is introduced, which enables to remove spurious edges from the pose-graph. The experimental evaluation is performed on two publicly available RGB-D data sets to ensure that our results are scientifically verifiable.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agarwal, P., Grisetti, G., Tipaldi, G., Spinello, L., Burgard, W., Stachniss, C.: Experimental analysis of dynamic covariance scaling for robust map optimization under bad initial estimates. In: Proceedings of the IEEE International Conference on Robotics and Automation, Hong Kong, pp. 3626–3631 (2014)

    Google Scholar 

  2. Bachrach, A., Prentice, S., He, R., Henry, P., Huang, A., Krainin, M., Maturana, D., Fox, D., Roy, N.: Estimation, planning, and mapping for autonomous flight using an RGB-D camera in GPS-denied environments. Int. J. Robot. Res. 31(11), 1320–1343 (2012)

    Article  Google Scholar 

  3. Bailey, T., Durrant-Whyte, H.: Simultaneous localization and mapping: part II. IEEE Robot. Autom. Mag. 13(3), 108–117 (2006)

    Article  Google Scholar 

  4. Baker, S., Matthews, I.: Lucas-Kanade 20 years on: a unifying framework. Int. J. Comput. Vis. 56(3), 221–255 (2004)

    Article  Google Scholar 

  5. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  6. Bouguet, J.Y.: Pyramidal implementation of the Lucas-Kanade feature tracker, description of the algorithm (2000)

    Google Scholar 

  7. Calonder, M., Lepetit, V., Ozuysal, M., Trzcinski, T., Strecha, C., Fua, P.: BRIEF: computing a local binary descriptor very fast. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1281–1298 (2012)

    Article  Google Scholar 

  8. Choi, S., Kim, T., Yu, W.: Performance evaluation of RANSAC family. In: Proceedings of British Machine Vision Conference, London (2009)

    Google Scholar 

  9. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping: part I. IEEE Robot. Autom. Mag. 13(2), 99–110 (2006)

    Article  Google Scholar 

  10. Eggert, D.W., Lorusso, A., Fisher, R.B.: Estimating 3-D rigid body transformations: a comparison of four major algorithms. Mach. Vis. Appl. 9(5–6), 272–290 (1997)

    Article  Google Scholar 

  11. Engels, C., Stewenius, H., Nistér, D.: Bundle adjustment rules. In: Photogrammetric Computer Vision, September 2006

    Google Scholar 

  12. Endres, F., Hess, J., Engelhard, N., Sturm, J., Cremers, D., Burgard, W.: An evaluation of the RGB-D SLAM system. In: Proceedings of the IEEE International Conference on Robotics and Automation, St. Paul, pp. 1691–1696 (2012)

    Google Scholar 

  13. Endres, F., Hess, J., Sturm, J., Cremers, D., Burgard, W.: 3-D Mapping with an RGB-D camera. IEEE Trans. Robot. 30(1), 177–187 (2014)

    Article  Google Scholar 

  14. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the International Conference on Knowledge Discovery and Data Mining, pp. 226–231 (1996)

    Google Scholar 

  15. Fischler, M., Bolles, R.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  16. Fraundorfer, F., Scaramuzza, D.: Visual odometry: part II: matching, robustness, optimization, and applications. IEEE Robot. Autom. Mag. 19(2), 78–90 (2012)

    Article  Google Scholar 

  17. Handa, A., Whelan, T., McDonald, J., Davison, A.: A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM. In: IEEE International Conference on Robotics and Automation, Hong Kong (2014)

    Google Scholar 

  18. Henry, P., Krainin, M., Herbst, E., Ren, X., Fox, D.: RGB-D mapping: using kinect-style depth cameras for dense 3D modeling of indoor environments. Int. J. Robot. Res. 31(5), 647–663 (2012)

    Article  Google Scholar 

  19. Kerl, C., Sturm, J., Cremers, D.: Robust odometry estimation for RGB-D cameras. In: Proceedings of the IEEE International Conference on Robotics and Automation, Karlsruhe, pp. 3748–3754 (2013)

    Google Scholar 

  20. Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K., Burgard, W.: g2o: a general framework for graph optimization. In: Proceedings of the IEEE International Conference on Robotics and Automation, Shanghai, pp. 3607–3613 (2011)

    Google Scholar 

  21. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  22. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)

    Article  Google Scholar 

  23. Mouragnon, E., Lhuillier, M., Dhome, M., Dekeyser, F., Sayd, P.: Generic and real-time structure from motion using local bundle adjustment. Image Vis. Comput. 27, 1178–1193 (2009)

    Article  Google Scholar 

  24. Nowicki, M., Skrzypczyński, P.: Combining photometric and depth data for lightweight and robust visual odometry. In: European Conference on Mobile Robots, pp. 125–130 (2013)

    Google Scholar 

  25. Park, J.-H., Shin, Y.-D., Bae, J.-H., Baeg, M.-H.: Spatial uncertainty model for visual features using a Kinect sensor. Sensors 12, 8640–8662 (2012)

    Article  Google Scholar 

  26. Raguram, R., Chum, O., Pollefeys, M., Matas, J., Frahm, J.: USAC: a universal framework for random sample consenus. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 2022–2038 (2013)

    Article  Google Scholar 

  27. Rosten, E., Drummond, T.W.: Machine learning for high-speed corner detection. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951, pp. 430–443. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  28. Rublee, E., Rabaud, V., Konolige, K., Bradski, G.: ORB: an efficient alternative to SIFT or SURF. In: IEEE International Conference on Computer Vision (ICCV), pp. 2564–2571 (2011)

    Google Scholar 

  29. Scaramuzza, D., Fraundorfer, F.: Visual odometry: part I the first 30 years and fundamentals. IEEE Robot. Autom. Mag. 18(4), 80–92 (2011)

    Article  Google Scholar 

  30. Schmidt, A., Kraft, M., Fularz, M., Domagala, Z.: Comparative assessment of point feature detectors and descriptors in the context of robot navigation. J. Autom. Mob. Robot. Intell. Syst. 7(1), 11–20 (2013)

    Google Scholar 

  31. Shi, J., Tomasi, C.: Good features to track. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 1994), pp. 593–600 (1994)

    Google Scholar 

  32. Skrzypczyński, P.: Simultaneous localization and mapping: a feature-based probabilistic approach. Int. J. Appl. Math. Comput. Sci. 19(4), 575–588 (2009)

    MATH  Google Scholar 

  33. Steinbrücker, F., Sturm, J., Cremers, D.: Real-time visual odometry from dense RGB-D images, Workshop on Live Dense Reconstruction with Moving Cameras. In: IEEE International Conference on Computer Vision (ICCV), Barcelona (2011)

    Google Scholar 

  34. Strasdat, H.: Local accuracy and global consistency for efficient visual SLAM. Ph.D. dissertation, Imperial College, London (2012)

    Google Scholar 

  35. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.: A benchmark for the evaluation of RGB-D SLAM systems. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, pp. 573–580 (2012)

    Google Scholar 

  36. Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: a survey. Found. Trends Comput. Graph. Vis. 3(3), 177–280 (2008)

    Article  Google Scholar 

  37. Umeyama, S.: Least-squares estimation of transformation parameters between two point patterns. IEEE Trans. Pattern Anal. Mach. Intell. 13(4), 376–380 (1991)

    Article  Google Scholar 

  38. Whelan, T., Johannsson, H., Kaess, M., Leonard, J. J., McDonald, J. B.: Robust real-time visual odometry for dense RGB-D mapping. In: Proceedings of the IEEE International Conference on Robotics and Automation, Karlsruhe, pp. 5704–5711 (2013)

    Google Scholar 

Download references

Acknowledgement

This research was financed by the Polish National Science Centre grant funded according to the decision DEC-2013/09/B/ST7/01583.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Skrzypczyński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Belter, D., Nowicki, M., Skrzypczyński, P. (2015). On the Performance of Pose-Based RGB-D Visual Navigation Systems. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9004. Springer, Cham. https://doi.org/10.1007/978-3-319-16808-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16808-1_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16807-4

  • Online ISBN: 978-3-319-16808-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics