Skip to main content

A Homography Formulation to the 3pt Plus a Common Direction Relative Pose Problem

  • Conference paper
  • First Online:
Computer Vision -- ACCV 2014 (ACCV 2014)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9004))

Included in the following conference series:

Abstract

In this paper we present an alternative formulation for the minimal solution to the 3pt plus a common direction relative pose problem. Instead of the commonly used epipolar constraint we use the homography constraint to derive a novel formulation for the 3pt problem. This formulation allows the computation of the normal vector of the plane defined by the three input points without any additional computation in addition to the standard motion parameters of the camera. We show the working of the method on synthetic and real data sets and compare it to the standard 3pt method and the 5pt method for relative pose estimation. In addition we analyze the degenerate conditions for the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004). ISBN: 0521540518

    Book  MATH  Google Scholar 

  2. Nistér, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26, 756–777 (2004)

    Article  Google Scholar 

  3. Scaramuzza, D.: 1-point-ransac structure from motion for vehicle-mounted cameras by exploiting non-holonomic constraints. Int. J. Comput. Vis. 95, 74–85 (2011)

    Article  Google Scholar 

  4. Kneip, L., Martinelli, A., Weiss, S., Scaramuzza, D., Siegwart, R.: Closed-form solution for absolute scale velocity determination combining inertial measurements and a single feature correspondence. In: IEEE International Conference on Robotics and Automation, ICRA 2011, pp. 4546–4553. Shanghai, China, 9–13 May 2011

    Google Scholar 

  5. Viéville, T., Clergue, E., Facao, P.D.S.: Computation of ego-motion and structure from visual and inertial sensors using the vertical cue. In: Proceedings, Fourth International Conference on Computer Vision, pp. 591–598. IEEE (1993)

    Google Scholar 

  6. Corke, P.: An inertial and visual sensing system for a small autonomous helicopter. J. Rob. Syst. 21, 43–51 (2004)

    Article  Google Scholar 

  7. Lobo, J., Dias, J.: Vision and inertial sensor cooperation using gravity as a vertical reference. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1597–1608 (2003)

    Article  Google Scholar 

  8. Weiss, S., Siegwart, R.: Real-time metric state estimation for modular vision-inertial systems. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 4531–4537. IEEE (2011)

    Google Scholar 

  9. Domke, J., Aloimonos, Y.: Integration of visual and inertial information for egomotion: a stochastic approach. In: Proceedings 2006 IEEE International Conference on Robotics and Automation. ICRA 2006, pp. 2053–2059. IEEE (2006)

    Google Scholar 

  10. Kalantari, M., Hashemi, A., Jung, F., Guédon, J.P.: A new solution to the relative orientation problem using only 3 points and the vertical direction. J. Math. Imaging Vis. 39, 259–268 (2011)

    Article  MATH  Google Scholar 

  11. Antone, M.E., Teller, S.J.: Automatic recovery of relative camera rotations for urban scenes. In: CVPR, pp. 2282–2289. IEEE Computer Society (2000)

    Google Scholar 

  12. Oreifej, O., da Vitoria Lobo, N., Shah, M.: Horizon constraint for unambiguous uav navigation in planar scenes. In: IEEE International Conference on Robotics and Automation, ICRA 2011, pp. 1159–1165. Shanghai, China, 9–13 May 2011

    Google Scholar 

  13. Fraundorfer, F., Tanskanen, P., Pollefeys, M.: A minimal case solution to the calibrated relative pose problem for the case of two known orientation angles. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 269–282. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  14. Naroditsky, O., Zhou, X.S., Gallier, J.H., Roumeliotis, S.I., Daniilidis, K.: Two efficient solutions for visual odometry using directional correspondence. IEEE Trans. Pattern Anal. Mach. Intell. 34, 818–824 (2012)

    Article  Google Scholar 

  15. Chum, O., Werner, T., Matas, J.: Two-view geometry estimation unaffected by a dominant plane. In: CVPR (1), pp. 772–779. IEEE Computer Society (2005)

    Google Scholar 

  16. Szeliski, R., Torr, P.: Geometrically constrained structure from motion: points on planes. In: Koch, R., Van Gool, L. (eds.) SMILE 1998. LNCS, vol. 1506, pp. 171–186. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  17. Olivier Saurer, F.F., Pollefeys, M.: Homography based visual odometry with known vertical direction and weak manhattan world assumption. In: IEEE/IROS Workshop on Visual Control of Mobile Robots (ViCoMoR 2012) (2012)

    Google Scholar 

  18. Ortin, D., Montiel, J.: Indoor robot motion based on monocular images. Robotica 19, 331–342 (2001)

    Article  Google Scholar 

  19. Troiani, C., Martinelli, A., Laugier, C., Scaramuzza, D.: 1-point-based monocular motion estimation for computationally-limited micro aerial vehicles. In: 2013 European Conference on Mobile Robots (ECMR), pp. 13–18. IEEE (2013)

    Google Scholar 

  20. Bazin, J.C., Demonceaux, C., Vasseur, P., Kweon, I.: Rotation estimation and vanishing point extraction by omnidirectional vision in urban environment. Int. J. Robot. Res. 31, 63–81 (2012)

    Article  Google Scholar 

  21. Li, B., Heng, L., Lee, G.H., Pollefeys, M.: A 4-point algorithm for relative pose estimation of a calibrated camera with a known relative rotation angle. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2013, Tokyo, Japan (2013)

    Google Scholar 

  22. Troiani, C., Martinelli, A., Laugier, C., Scaramuzza, D.: 2-point-based outlier rejection for camera-imu systems with applications to micro aerial vehicles. In: IEEE InternationalConference on Robotics and Automation (ICRA), Hong Kong (2014)

    Google Scholar 

  23. Martinelli, A.: Closed-form solution of visual-inertial structure from motion. Int. J. Comput. Vis. 106, 138–152 (2014)

    Article  MathSciNet  Google Scholar 

  24. Lee, G.H., Fraundorfer, F., Pollefeys, M.: Mav visual slam with plane constraint. In: ICRA, pp. 3139–3144. IEEE (2011)

    Google Scholar 

  25. Cox, D.A., Little, J., O’Shea, D.: Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics). Springer-Verlag, Secaucus (2007)

    Book  Google Scholar 

  26. Kukelova, Z., Bujnak, M., Pajdla, T.: Automatic generator of minimal problem solvers. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 302–315. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

Download references

Acknowledgment

This work has been partially supported by Projet ANR Blanc International DrAACaR-ANR-11-IS03-0003 and a Google Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Fraundorfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Saurer, O., Vasseur, P., Demonceaux, C., Fraundorfer, F. (2015). A Homography Formulation to the 3pt Plus a Common Direction Relative Pose Problem. In: Cremers, D., Reid, I., Saito, H., Yang, MH. (eds) Computer Vision -- ACCV 2014. ACCV 2014. Lecture Notes in Computer Science(), vol 9004. Springer, Cham. https://doi.org/10.1007/978-3-319-16808-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16808-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16807-4

  • Online ISBN: 978-3-319-16808-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics